Properties

Label 18.2.86786450632...3481.1
Degree $18$
Signature $[2, 8]$
Discriminant $41^{3}\cdot 11221481^{2}$
Root discriminant $11.28$
Ramified primes $41, 11221481$
Class number $1$
Class group Trivial
Galois Group 18T968

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 2, -5, 1, -6, 2, 0, 4, 3, 4, 0, 2, -6, 1, -5, 2, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - x^17 + 2*x^16 - 5*x^15 + x^14 - 6*x^13 + 2*x^12 + 4*x^10 + 3*x^9 + 4*x^8 + 2*x^6 - 6*x^5 + x^4 - 5*x^3 + 2*x^2 - x + 1)
gp: K = bnfinit(x^18 - x^17 + 2*x^16 - 5*x^15 + x^14 - 6*x^13 + 2*x^12 + 4*x^10 + 3*x^9 + 4*x^8 + 2*x^6 - 6*x^5 + x^4 - 5*x^3 + 2*x^2 - x + 1, 1)

Normalized defining polynomial

\(x^{18} \) \(\mathstrut -\mathstrut x^{17} \) \(\mathstrut +\mathstrut 2 x^{16} \) \(\mathstrut -\mathstrut 5 x^{15} \) \(\mathstrut +\mathstrut x^{14} \) \(\mathstrut -\mathstrut 6 x^{13} \) \(\mathstrut +\mathstrut 2 x^{12} \) \(\mathstrut +\mathstrut 4 x^{10} \) \(\mathstrut +\mathstrut 3 x^{9} \) \(\mathstrut +\mathstrut 4 x^{8} \) \(\mathstrut +\mathstrut 2 x^{6} \) \(\mathstrut -\mathstrut 6 x^{5} \) \(\mathstrut +\mathstrut x^{4} \) \(\mathstrut -\mathstrut 5 x^{3} \) \(\mathstrut +\mathstrut 2 x^{2} \) \(\mathstrut -\mathstrut x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $18$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[2, 8]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(8678645063271073481=41^{3}\cdot 11221481^{2}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $11.28$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $41, 11221481$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{83} a^{16} - \frac{8}{83} a^{15} - \frac{26}{83} a^{14} + \frac{19}{83} a^{13} - \frac{23}{83} a^{12} - \frac{30}{83} a^{11} - \frac{14}{83} a^{10} - \frac{38}{83} a^{9} + \frac{35}{83} a^{8} - \frac{38}{83} a^{7} - \frac{14}{83} a^{6} - \frac{30}{83} a^{5} - \frac{23}{83} a^{4} + \frac{19}{83} a^{3} - \frac{26}{83} a^{2} - \frac{8}{83} a + \frac{1}{83}$, $\frac{1}{83} a^{17} - \frac{7}{83} a^{15} - \frac{23}{83} a^{14} - \frac{37}{83} a^{13} + \frac{35}{83} a^{12} - \frac{5}{83} a^{11} + \frac{16}{83} a^{10} - \frac{20}{83} a^{9} - \frac{7}{83} a^{8} + \frac{14}{83} a^{7} + \frac{24}{83} a^{6} - \frac{14}{83} a^{5} + \frac{1}{83} a^{4} - \frac{40}{83} a^{3} + \frac{33}{83} a^{2} + \frac{20}{83} a + \frac{8}{83}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $9$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( \frac{24}{83} a^{17} - \frac{128}{83} a^{16} + \frac{192}{83} a^{15} - \frac{295}{83} a^{14} + 6 a^{13} - \frac{283}{83} a^{12} + \frac{317}{83} a^{11} - \frac{231}{83} a^{10} - \frac{98}{83} a^{9} - a^{8} + \frac{54}{83} a^{7} - \frac{122}{83} a^{6} + \frac{267}{83} a^{5} - \frac{186}{83} a^{4} + \frac{509}{83} a^{3} - \frac{362}{83} a^{2} + \frac{176}{83} a - \frac{185}{83} \),  \( a \),  \( \frac{96}{83} a^{17} - \frac{41}{83} a^{16} + \frac{71}{83} a^{15} - \frac{312}{83} a^{14} - \frac{264}{83} a^{13} - \frac{262}{83} a^{12} - \frac{80}{83} a^{11} + \frac{284}{83} a^{10} + \frac{385}{83} a^{9} + \frac{300}{83} a^{8} + \frac{412}{83} a^{7} + \frac{56}{83} a^{6} + \frac{52}{83} a^{5} - \frac{372}{83} a^{4} - \frac{220}{83} a^{3} - \frac{82}{83} a^{2} - \frac{76}{83} a + \frac{63}{83} \),  \( \frac{4}{83} a^{16} - \frac{32}{83} a^{15} + \frac{62}{83} a^{14} - \frac{90}{83} a^{13} + \frac{157}{83} a^{12} - \frac{120}{83} a^{11} + \frac{110}{83} a^{10} - \frac{69}{83} a^{9} - \frac{26}{83} a^{8} - \frac{69}{83} a^{7} - \frac{56}{83} a^{6} - \frac{120}{83} a^{5} + \frac{74}{83} a^{4} - \frac{90}{83} a^{3} + \frac{145}{83} a^{2} - \frac{115}{83} a + \frac{87}{83} \),  \( \frac{77}{83} a^{17} - \frac{207}{83} a^{16} + \frac{287}{83} a^{15} - \frac{539}{83} a^{14} + \frac{605}{83} a^{13} - \frac{429}{83} a^{12} + \frac{430}{83} a^{11} - \frac{186}{83} a^{10} - \frac{65}{83} a^{9} - \frac{65}{83} a^{8} + \frac{146}{83} a^{7} - \frac{234}{83} a^{6} + \frac{401}{83} a^{5} - \frac{474}{83} a^{4} + \frac{706}{83} a^{3} - \frac{460}{83} a^{2} + \frac{208}{83} a - \frac{255}{83} \),  \( \frac{44}{83} a^{17} - \frac{50}{83} a^{16} + \frac{9}{83} a^{15} - \frac{127}{83} a^{14} - \frac{88}{83} a^{13} + \frac{117}{83} a^{12} + \frac{35}{83} a^{11} + \frac{325}{83} a^{10} + \frac{107}{83} a^{9} + \frac{17}{83} a^{8} + \frac{26}{83} a^{7} - \frac{236}{83} a^{6} - \frac{195}{83} a^{5} - \frac{217}{83} a^{4} - \frac{137}{83} a^{3} + \frac{179}{83} a^{2} - \frac{48}{83} a + \frac{136}{83} \),  \( \frac{66}{83} a^{17} - \frac{58}{83} a^{16} + \frac{85}{83} a^{15} - \frac{259}{83} a^{14} - \frac{58}{83} a^{13} - \frac{174}{83} a^{12} - \frac{1}{83} a^{11} + \frac{208}{83} a^{10} + \frac{137}{83} a^{9} + \frac{164}{83} a^{8} + \frac{140}{83} a^{7} - \frac{94}{83} a^{6} - \frac{14}{83} a^{5} - \frac{343}{83} a^{4} - \frac{7}{83} a^{3} - \frac{49}{83} a^{2} + \frac{41}{83} a + \frac{138}{83} \),  \( \frac{102}{83} a^{17} - \frac{43}{83} a^{16} + \frac{128}{83} a^{15} - \frac{398}{83} a^{14} - \frac{192}{83} a^{13} - \frac{504}{83} a^{12} - \frac{50}{83} a^{11} + \frac{159}{83} a^{10} + \frac{424}{83} a^{9} + \frac{437}{83} a^{8} + \frac{489}{83} a^{7} + \frac{145}{83} a^{6} + \frac{194}{83} a^{5} - \frac{486}{83} a^{4} - 2 a^{3} - \frac{330}{83} a^{2} - \frac{23}{83} a - \frac{57}{83} \),  \( \frac{116}{83} a^{17} - \frac{67}{83} a^{16} + \frac{139}{83} a^{15} - \frac{428}{83} a^{14} - \frac{170}{83} a^{13} - \frac{458}{83} a^{12} - \frac{64}{83} a^{11} + \frac{138}{83} a^{10} + \frac{309}{83} a^{9} + \frac{329}{83} a^{8} + \frac{435}{83} a^{7} + \frac{153}{83} a^{6} + \frac{137}{83} a^{5} - \frac{418}{83} a^{4} - \frac{103}{83} a^{3} - \frac{240}{83} a^{2} + \frac{34}{83} a + \frac{31}{83} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 93.6283865561 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

18T968:

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A non-solvable group of order 185794560
The 300 conjugacy class representatives for t18n968 are not computed
Character table for t18n968 is not computed

Intermediate fields

9.5.460080721.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ $18$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ $18$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
41Data not computed
11221481Data not computed