\\ Pari/GP code for working with number field 18.2.4768875488962616064464333777.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^18 - 2*x^17 + 17*x^15 - 17*x^14 + 51*x^13 + 119*x^12 - 476*x^11 + 493*x^10 + 1632*x^9 - 3638*x^8 - 3502*x^7 + 6936*x^6 + 1972*x^5 - 3451*x^4 + 3264*x^3 + 17*x^2 - 750*x + 225, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])