Normalized defining polynomial
\( x^{18} - 7 x^{17} + 17 x^{16} + 17 x^{15} - 935 x^{14} + 799 x^{13} + 9231 x^{12} - 41463 x^{11} + 192780 x^{10} + 291686 x^{9} - 390014 x^{8} + 6132223 x^{7} - 3955645 x^{6} + 2916112 x^{5} + 45030739 x^{4} - 94452714 x^{3} + 184016925 x^{2} - 141466230 x + 113422599 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(40254497110927943179349807054456171205137\)\(\medspace = 17^{33}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $180.23$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{5} - \frac{2}{9} a^{4} - \frac{4}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{2}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{11} - \frac{1}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{27} a^{8} - \frac{1}{27} a^{7} - \frac{1}{27} a^{6} + \frac{4}{27} a^{5} - \frac{1}{3} a^{4} - \frac{1}{27} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{1}{27} a^{10} + \frac{1}{27} a^{9} - \frac{1}{27} a^{8} - \frac{1}{27} a^{7} + \frac{4}{27} a^{6} - \frac{10}{27} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{15} - \frac{1}{27} a^{12} + \frac{1}{9} a^{7} - \frac{1}{27} a^{6} + \frac{1}{9} a^{5} - \frac{2}{9} a^{4} - \frac{1}{27} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{16} - \frac{1}{27} a^{11} - \frac{1}{27} a^{10} + \frac{1}{27} a^{9} + \frac{4}{27} a^{8} - \frac{2}{27} a^{7} + \frac{2}{27} a^{6} - \frac{2}{27} a^{5} - \frac{10}{27} a^{4} - \frac{7}{27} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{7094103080282041057010466744591157150275076597906943206625637} a^{17} + \frac{33306058218965096825406300754062419755021319837762746981781}{7094103080282041057010466744591157150275076597906943206625637} a^{16} + \frac{113280437735221180596099517187054393793903590588158249434011}{7094103080282041057010466744591157150275076597906943206625637} a^{15} + \frac{63477218186831708295339371125762892490906614152752133861748}{7094103080282041057010466744591157150275076597906943206625637} a^{14} - \frac{74373966962318072835903796536680710457213920606273283465810}{7094103080282041057010466744591157150275076597906943206625637} a^{13} + \frac{26422156635380679168571928836057583643726777235204490215900}{7094103080282041057010466744591157150275076597906943206625637} a^{12} + \frac{1011544388066388771488958382490728422938368390356278837669}{87581519509654827864326749933224162349075019727246212427477} a^{11} - \frac{12500322977847165381105112558806468502702489228971942713135}{788233675586893450778940749399017461141675177545215911847293} a^{10} + \frac{53918180854577885340229395640194144607694034706814562804904}{788233675586893450778940749399017461141675177545215911847293} a^{9} + \frac{485286017716920693113743662888986979959906195893717959196193}{7094103080282041057010466744591157150275076597906943206625637} a^{8} + \frac{573632909541730501101989271238884464535064874448775160698546}{7094103080282041057010466744591157150275076597906943206625637} a^{7} + \frac{18559627702323962639235972978530333324815977275549071584223}{7094103080282041057010466744591157150275076597906943206625637} a^{6} + \frac{605095082370349487028612855302968143662809853644242341385755}{7094103080282041057010466744591157150275076597906943206625637} a^{5} - \frac{3492989685279513546436257846936644802781664944539705228262751}{7094103080282041057010466744591157150275076597906943206625637} a^{4} - \frac{50718107243063419281946547030748626781197034471958243437374}{7094103080282041057010466744591157150275076597906943206625637} a^{3} - \frac{393375175373788355630462288850253498835816268184014763925975}{2364701026760680352336822248197052383425025532635647735541879} a^{2} + \frac{53813386405165044217750392174977292140937048316015113206813}{262744558528964483592980249799672487047225059181738637282431} a + \frac{1811201964882249481207172638891755105738601597851513211357}{262744558528964483592980249799672487047225059181738637282431}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 45413380405400 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$\PGL(2,17)$ (as 18T468):
A non-solvable group of order 4896 |
The 19 conjugacy class representatives for $\PGL(2,17)$ |
Character table for $\PGL(2,17)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | $16{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | $18$ | $16{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
17 | Data not computed |
Additional information
This field is associated with the 17-division points on any elliptic curve in the isogeny class 17.a1.