Normalized defining polynomial
\(x^{18} - 4 x^{17} + 17 x^{16} - 51 x^{15} + 170 x^{14} - 408 x^{13} + 918 x^{12} - 1445 x^{11} + 1870 x^{10} - 1887 x^{9} + 3672 x^{8} - 5797 x^{7} + 8058 x^{6} - 8143 x^{5} + 9044 x^{4} - 6851 x^{3} + 5916 x^{2} - 2826 x + 1971\)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-33382128422738312451250336439\)\(\medspace = -\,7^{9}\cdot 17^{17}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $38.43$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $7, 17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{15} a^{10} + \frac{1}{15} a^{9} + \frac{2}{15} a^{8} - \frac{4}{15} a^{7} - \frac{4}{15} a^{6} + \frac{2}{15} a^{5} + \frac{1}{3} a^{4} + \frac{2}{15} a^{3} - \frac{2}{15} a^{2} - \frac{2}{15} a - \frac{2}{5}$, $\frac{1}{15} a^{11} + \frac{1}{15} a^{9} - \frac{1}{15} a^{8} + \frac{1}{3} a^{7} - \frac{4}{15} a^{6} - \frac{7}{15} a^{5} + \frac{2}{15} a^{4} + \frac{1}{15} a^{3} + \frac{1}{3} a^{2} + \frac{1}{15} a + \frac{2}{5}$, $\frac{1}{15} a^{12} - \frac{2}{15} a^{9} - \frac{2}{15} a^{8} - \frac{1}{3} a^{7} + \frac{7}{15} a^{6} - \frac{1}{3} a^{5} + \frac{2}{5} a^{4} - \frac{2}{15} a^{3} - \frac{2}{15} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{45} a^{13} + \frac{1}{45} a^{12} + \frac{1}{45} a^{11} + \frac{1}{45} a^{10} + \frac{1}{9} a^{9} - \frac{7}{45} a^{8} + \frac{4}{9} a^{7} - \frac{19}{45} a^{6} - \frac{4}{9} a^{5} + \frac{1}{45} a^{4} - \frac{17}{45} a^{3} - \frac{4}{9} a^{2} - \frac{2}{15} a + \frac{1}{5}$, $\frac{1}{45} a^{14} + \frac{1}{45} a^{10} + \frac{2}{15} a^{8} + \frac{1}{15} a^{7} - \frac{4}{45} a^{6} - \frac{1}{15} a^{4} + \frac{7}{15} a^{3} + \frac{1}{9} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{405} a^{15} + \frac{2}{405} a^{14} - \frac{1}{405} a^{13} - \frac{2}{81} a^{12} + \frac{4}{135} a^{11} + \frac{2}{81} a^{10} + \frac{5}{81} a^{9} + \frac{31}{405} a^{8} - \frac{7}{15} a^{7} - \frac{106}{405} a^{6} - \frac{199}{405} a^{5} - \frac{76}{405} a^{4} + \frac{97}{405} a^{3} + \frac{22}{135} a^{2} - \frac{14}{45} a + \frac{4}{15}$, $\frac{1}{710775} a^{16} + \frac{76}{236925} a^{15} - \frac{2906}{710775} a^{14} - \frac{1363}{142155} a^{13} - \frac{6046}{710775} a^{12} + \frac{476}{142155} a^{11} + \frac{21752}{710775} a^{10} + \frac{8939}{710775} a^{9} - \frac{20287}{142155} a^{8} + \frac{313652}{710775} a^{7} + \frac{254296}{710775} a^{6} + \frac{2182}{710775} a^{5} + \frac{84391}{236925} a^{4} - \frac{12562}{142155} a^{3} - \frac{57281}{236925} a^{2} - \frac{10643}{78975} a + \frac{10432}{26325}$, $\frac{1}{1849517177664098475} a^{17} + \frac{90506097206}{369903435532819695} a^{16} - \frac{85100821688737}{369903435532819695} a^{15} + \frac{953453907851417}{97343009350742025} a^{14} - \frac{2043569804045974}{205501908629344275} a^{13} + \frac{9316541651117951}{616505725888032825} a^{12} + \frac{10174648711176034}{616505725888032825} a^{11} + \frac{32086016597163448}{1849517177664098475} a^{10} + \frac{9879548168617211}{616505725888032825} a^{9} + \frac{38086734990871574}{616505725888032825} a^{8} - \frac{21561100825771321}{123301145177606565} a^{7} - \frac{55900389910013767}{142270552128007575} a^{6} - \frac{548114351618466398}{1849517177664098475} a^{5} + \frac{405263534218173796}{1849517177664098475} a^{4} - \frac{898598524016898788}{1849517177664098475} a^{3} - \frac{152200228790276111}{616505725888032825} a^{2} - \frac{5713728458187901}{41100381725868855} a - \frac{21263061224111066}{68500636209781425}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 5250337.35027 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 36 |
The 12 conjugacy class representatives for $D_{18}$ |
Character table for $D_{18}$ |
Intermediate fields
\(\Q(\sqrt{-119}) \), 3.1.2023.1, 6.0.487010951.1, 9.1.16748793615841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 18 sibling: | 18.2.4768875488962616064464333777.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17 | Data not computed |