Properties

Label 18.0.297...888.1
Degree $18$
Signature $[0, 9]$
Discriminant $-2.977\times 10^{23}$
Root discriminant \(20.14\)
Ramified primes $2,3,7$
Class number $1$
Class group trivial
Galois group $C_3\times S_3^2$ (as 18T46)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 42*x^16 - 129*x^15 + 264*x^14 - 324*x^13 + 126*x^12 + 369*x^11 - 819*x^10 + 711*x^9 + 162*x^8 - 1215*x^7 + 1608*x^6 - 1269*x^5 + 729*x^4 - 333*x^3 + 117*x^2 - 27*x + 3)
 
gp: K = bnfinit(y^18 - 9*y^17 + 42*y^16 - 129*y^15 + 264*y^14 - 324*y^13 + 126*y^12 + 369*y^11 - 819*y^10 + 711*y^9 + 162*y^8 - 1215*y^7 + 1608*y^6 - 1269*y^5 + 729*y^4 - 333*y^3 + 117*y^2 - 27*y + 3, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 9*x^17 + 42*x^16 - 129*x^15 + 264*x^14 - 324*x^13 + 126*x^12 + 369*x^11 - 819*x^10 + 711*x^9 + 162*x^8 - 1215*x^7 + 1608*x^6 - 1269*x^5 + 729*x^4 - 333*x^3 + 117*x^2 - 27*x + 3);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 9*x^17 + 42*x^16 - 129*x^15 + 264*x^14 - 324*x^13 + 126*x^12 + 369*x^11 - 819*x^10 + 711*x^9 + 162*x^8 - 1215*x^7 + 1608*x^6 - 1269*x^5 + 729*x^4 - 333*x^3 + 117*x^2 - 27*x + 3)
 

\( x^{18} - 9 x^{17} + 42 x^{16} - 129 x^{15} + 264 x^{14} - 324 x^{13} + 126 x^{12} + 369 x^{11} + \cdots + 3 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-297650820707983690149888\) \(\medspace = -\,2^{12}\cdot 3^{31}\cdot 7^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(20.14\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{97/54}7^{1/2}\approx 30.219468835479$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $3$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7}a^{15}+\frac{2}{7}a^{14}-\frac{2}{7}a^{13}+\frac{3}{7}a^{12}-\frac{2}{7}a^{10}+\frac{3}{7}a^{9}+\frac{2}{7}a^{8}+\frac{1}{7}a^{7}-\frac{1}{7}a^{6}-\frac{1}{7}a^{5}+\frac{1}{7}a^{4}-\frac{1}{7}a^{3}-\frac{1}{7}a^{2}-\frac{1}{7}a+\frac{3}{7}$, $\frac{1}{7}a^{16}+\frac{1}{7}a^{14}+\frac{1}{7}a^{12}-\frac{2}{7}a^{11}+\frac{3}{7}a^{9}-\frac{3}{7}a^{8}-\frac{3}{7}a^{7}+\frac{1}{7}a^{6}+\frac{3}{7}a^{5}-\frac{3}{7}a^{4}+\frac{1}{7}a^{3}+\frac{1}{7}a^{2}-\frac{2}{7}a+\frac{1}{7}$, $\frac{1}{80802735730283}a^{17}-\frac{4535132339027}{80802735730283}a^{16}-\frac{1793526400509}{80802735730283}a^{15}+\frac{16511630724905}{80802735730283}a^{14}+\frac{35329446934030}{80802735730283}a^{13}+\frac{16534233289659}{80802735730283}a^{12}+\frac{27898233651924}{80802735730283}a^{11}-\frac{11456376131096}{80802735730283}a^{10}-\frac{6305423980162}{80802735730283}a^{9}-\frac{36571844611397}{80802735730283}a^{8}+\frac{12048473729864}{80802735730283}a^{7}+\frac{18216096698679}{80802735730283}a^{6}-\frac{5565846668190}{11543247961469}a^{5}+\frac{37678358602995}{80802735730283}a^{4}-\frac{35618967041375}{80802735730283}a^{3}-\frac{366900269653}{11543247961469}a^{2}-\frac{526136218134}{80802735730283}a+\frac{33305999809806}{80802735730283}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{223828226532}{24612469001} a^{17} + \frac{1848054751407}{24612469001} a^{16} - \frac{8004176785874}{24612469001} a^{15} + \frac{22744707214086}{24612469001} a^{14} - \frac{41439062414148}{24612469001} a^{13} + \frac{39693396171237}{24612469001} a^{12} + \frac{4733183177958}{24612469001} a^{11} - \frac{81795320579322}{24612469001} a^{10} + \frac{121021578911702}{24612469001} a^{9} - \frac{61498762820730}{24612469001} a^{8} - \frac{91284537460350}{24612469001} a^{7} + \frac{206828092379994}{24612469001} a^{6} - \frac{195981226422180}{24612469001} a^{5} + \frac{121386158887752}{24612469001} a^{4} - \frac{59494279599486}{24612469001} a^{3} + \frac{22963470724908}{24612469001} a^{2} - \frac{5727667099788}{24612469001} a + \frac{661411624648}{24612469001} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{380712784373769}{80802735730283}a^{17}-\frac{32\!\cdots\!91}{80802735730283}a^{16}+\frac{14\!\cdots\!06}{80802735730283}a^{15}-\frac{40\!\cdots\!16}{80802735730283}a^{14}+\frac{76\!\cdots\!49}{80802735730283}a^{13}-\frac{78\!\cdots\!81}{80802735730283}a^{12}+\frac{24\!\cdots\!63}{80802735730283}a^{11}+\frac{14\!\cdots\!04}{80802735730283}a^{10}-\frac{22\!\cdots\!80}{80802735730283}a^{9}+\frac{13\!\cdots\!30}{80802735730283}a^{8}+\frac{13\!\cdots\!84}{80802735730283}a^{7}-\frac{37\!\cdots\!19}{80802735730283}a^{6}+\frac{55\!\cdots\!61}{11543247961469}a^{5}-\frac{25\!\cdots\!00}{80802735730283}a^{4}+\frac{13\!\cdots\!84}{80802735730283}a^{3}-\frac{75\!\cdots\!03}{11543247961469}a^{2}+\frac{14\!\cdots\!71}{80802735730283}a-\frac{20\!\cdots\!04}{80802735730283}$, $\frac{91615543400896}{80802735730283}a^{17}-\frac{437021114230461}{80802735730283}a^{16}+\frac{759011713018753}{80802735730283}a^{15}+\frac{11\!\cdots\!01}{80802735730283}a^{14}-\frac{11\!\cdots\!28}{80802735730283}a^{13}+\frac{32\!\cdots\!81}{80802735730283}a^{12}-\frac{41\!\cdots\!35}{80802735730283}a^{11}+\frac{13\!\cdots\!31}{80802735730283}a^{10}+\frac{58\!\cdots\!98}{80802735730283}a^{9}-\frac{10\!\cdots\!24}{80802735730283}a^{8}+\frac{78\!\cdots\!68}{80802735730283}a^{7}+\frac{57\!\cdots\!26}{80802735730283}a^{6}-\frac{32\!\cdots\!42}{1649035423067}a^{5}+\frac{14\!\cdots\!98}{80802735730283}a^{4}-\frac{82\!\cdots\!06}{80802735730283}a^{3}+\frac{56\!\cdots\!71}{11543247961469}a^{2}-\frac{14\!\cdots\!81}{80802735730283}a+\frac{25\!\cdots\!59}{80802735730283}$, $\frac{744879394356091}{80802735730283}a^{17}-\frac{64\!\cdots\!76}{80802735730283}a^{16}+\frac{28\!\cdots\!08}{80802735730283}a^{15}-\frac{84\!\cdots\!04}{80802735730283}a^{14}+\frac{16\!\cdots\!03}{80802735730283}a^{13}-\frac{17\!\cdots\!80}{80802735730283}a^{12}+\frac{21\!\cdots\!31}{80802735730283}a^{11}+\frac{28\!\cdots\!90}{80802735730283}a^{10}-\frac{49\!\cdots\!48}{80802735730283}a^{9}+\frac{32\!\cdots\!56}{80802735730283}a^{8}+\frac{25\!\cdots\!22}{80802735730283}a^{7}-\frac{80\!\cdots\!82}{80802735730283}a^{6}+\frac{12\!\cdots\!78}{11543247961469}a^{5}-\frac{58\!\cdots\!28}{80802735730283}a^{4}+\frac{29\!\cdots\!69}{80802735730283}a^{3}-\frac{17\!\cdots\!35}{11543247961469}a^{2}+\frac{34\!\cdots\!14}{80802735730283}a-\frac{44\!\cdots\!55}{80802735730283}$, $\frac{350244020444764}{80802735730283}a^{17}-\frac{26\!\cdots\!01}{80802735730283}a^{16}+\frac{11\!\cdots\!80}{80802735730283}a^{15}-\frac{29\!\cdots\!74}{80802735730283}a^{14}+\frac{49\!\cdots\!56}{80802735730283}a^{13}-\frac{36\!\cdots\!86}{80802735730283}a^{12}-\frac{24\!\cdots\!50}{80802735730283}a^{11}+\frac{11\!\cdots\!94}{80802735730283}a^{10}-\frac{12\!\cdots\!79}{80802735730283}a^{9}+\frac{31\!\cdots\!28}{80802735730283}a^{8}+\frac{15\!\cdots\!86}{80802735730283}a^{7}-\frac{23\!\cdots\!87}{80802735730283}a^{6}+\frac{26\!\cdots\!49}{11543247961469}a^{5}-\frac{10\!\cdots\!94}{80802735730283}a^{4}+\frac{45\!\cdots\!88}{80802735730283}a^{3}-\frac{20\!\cdots\!40}{11543247961469}a^{2}+\frac{26\!\cdots\!53}{80802735730283}a-\frac{79321765893110}{80802735730283}$, $\frac{229047413567566}{80802735730283}a^{17}-\frac{19\!\cdots\!61}{80802735730283}a^{16}+\frac{89\!\cdots\!63}{80802735730283}a^{15}-\frac{26\!\cdots\!44}{80802735730283}a^{14}+\frac{51\!\cdots\!28}{80802735730283}a^{13}-\frac{56\!\cdots\!73}{80802735730283}a^{12}+\frac{96\!\cdots\!18}{80802735730283}a^{11}+\frac{87\!\cdots\!53}{80802735730283}a^{10}-\frac{15\!\cdots\!46}{80802735730283}a^{9}+\frac{10\!\cdots\!21}{80802735730283}a^{8}+\frac{73\!\cdots\!53}{80802735730283}a^{7}-\frac{25\!\cdots\!63}{80802735730283}a^{6}+\frac{40\!\cdots\!56}{11543247961469}a^{5}-\frac{19\!\cdots\!43}{80802735730283}a^{4}+\frac{99\!\cdots\!43}{80802735730283}a^{3}-\frac{57\!\cdots\!83}{11543247961469}a^{2}+\frac{11\!\cdots\!56}{80802735730283}a-\frac{17\!\cdots\!44}{80802735730283}$, $\frac{412916116558054}{80802735730283}a^{17}-\frac{35\!\cdots\!87}{80802735730283}a^{16}+\frac{15\!\cdots\!42}{80802735730283}a^{15}-\frac{45\!\cdots\!33}{80802735730283}a^{14}+\frac{86\!\cdots\!87}{80802735730283}a^{13}-\frac{88\!\cdots\!65}{80802735730283}a^{12}+\frac{23\!\cdots\!52}{80802735730283}a^{11}+\frac{16\!\cdots\!36}{80802735730283}a^{10}-\frac{26\!\cdots\!41}{80802735730283}a^{9}+\frac{15\!\cdots\!96}{80802735730283}a^{8}+\frac{16\!\cdots\!81}{80802735730283}a^{7}-\frac{43\!\cdots\!39}{80802735730283}a^{6}+\frac{89\!\cdots\!68}{1649035423067}a^{5}-\frac{27\!\cdots\!12}{80802735730283}a^{4}+\frac{13\!\cdots\!51}{80802735730283}a^{3}-\frac{77\!\cdots\!50}{11543247961469}a^{2}+\frac{14\!\cdots\!85}{80802735730283}a-\frac{15\!\cdots\!51}{80802735730283}$, $\frac{107020323136}{80802735730283}a^{17}+\frac{24236693901045}{80802735730283}a^{16}-\frac{191958424616101}{80802735730283}a^{15}+\frac{796160396537890}{80802735730283}a^{14}-\frac{21\!\cdots\!17}{80802735730283}a^{13}+\frac{36\!\cdots\!70}{80802735730283}a^{12}-\frac{27\!\cdots\!11}{80802735730283}a^{11}-\frac{17\!\cdots\!10}{80802735730283}a^{10}+\frac{82\!\cdots\!63}{80802735730283}a^{9}-\frac{96\!\cdots\!06}{80802735730283}a^{8}+\frac{23\!\cdots\!42}{80802735730283}a^{7}+\frac{11\!\cdots\!88}{80802735730283}a^{6}-\frac{363081543049935}{1649035423067}a^{5}+\frac{13\!\cdots\!30}{80802735730283}a^{4}-\frac{73\!\cdots\!51}{80802735730283}a^{3}+\frac{468283999046301}{11543247961469}a^{2}-\frac{960987140257401}{80802735730283}a+\frac{141296255129726}{80802735730283}$, $\frac{103123895999662}{11543247961469}a^{17}-\frac{877044366217624}{11543247961469}a^{16}+\frac{555280242376785}{1649035423067}a^{15}-\frac{11\!\cdots\!61}{11543247961469}a^{14}+\frac{21\!\cdots\!61}{11543247961469}a^{13}-\frac{22\!\cdots\!70}{11543247961469}a^{12}+\frac{664387862604360}{11543247961469}a^{11}+\frac{39\!\cdots\!89}{11543247961469}a^{10}-\frac{64\!\cdots\!27}{11543247961469}a^{9}+\frac{54\!\cdots\!53}{1649035423067}a^{8}+\frac{39\!\cdots\!44}{11543247961469}a^{7}-\frac{15\!\cdots\!24}{1649035423067}a^{6}+\frac{15\!\cdots\!43}{1649035423067}a^{5}-\frac{70\!\cdots\!37}{11543247961469}a^{4}+\frac{35\!\cdots\!68}{11543247961469}a^{3}-\frac{14\!\cdots\!43}{11543247961469}a^{2}+\frac{38\!\cdots\!27}{11543247961469}a-\frac{70749149789827}{1649035423067}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 145692.568555 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 145692.568555 \cdot 1}{6\cdot\sqrt{297650820707983690149888}}\cr\approx \mathstrut & 0.679284058462 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 42*x^16 - 129*x^15 + 264*x^14 - 324*x^13 + 126*x^12 + 369*x^11 - 819*x^10 + 711*x^9 + 162*x^8 - 1215*x^7 + 1608*x^6 - 1269*x^5 + 729*x^4 - 333*x^3 + 117*x^2 - 27*x + 3)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 9*x^17 + 42*x^16 - 129*x^15 + 264*x^14 - 324*x^13 + 126*x^12 + 369*x^11 - 819*x^10 + 711*x^9 + 162*x^8 - 1215*x^7 + 1608*x^6 - 1269*x^5 + 729*x^4 - 333*x^3 + 117*x^2 - 27*x + 3, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 9*x^17 + 42*x^16 - 129*x^15 + 264*x^14 - 324*x^13 + 126*x^12 + 369*x^11 - 819*x^10 + 711*x^9 + 162*x^8 - 1215*x^7 + 1608*x^6 - 1269*x^5 + 729*x^4 - 333*x^3 + 117*x^2 - 27*x + 3);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 9*x^17 + 42*x^16 - 129*x^15 + 264*x^14 - 324*x^13 + 126*x^12 + 369*x^11 - 819*x^10 + 711*x^9 + 162*x^8 - 1215*x^7 + 1608*x^6 - 1269*x^5 + 729*x^4 - 333*x^3 + 117*x^2 - 27*x + 3);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3\times S_3^2$ (as 18T46):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 108
The 27 conjugacy class representatives for $C_3\times S_3^2$
Character table for $C_3\times S_3^2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.3.756.1, 6.0.1714608.1, 6.0.314928.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 12.0.729274129765776.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{3}$ R ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{3}$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ ${\href{/padicField/37.3.0.1}{3} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{3}$ ${\href{/padicField/53.2.0.1}{2} }^{9}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.18.12.1$x^{18} + 10 x^{16} + 12 x^{15} + 28 x^{14} + 100 x^{13} + 92 x^{12} + 224 x^{11} + 640 x^{10} + 352 x^{9} + 736 x^{8} + 1760 x^{7} + 688 x^{6} + 1024 x^{5} + 1760 x^{4} + 448 x^{3} + 448 x^{2} + 320 x + 64$$3$$6$$12$$S_3 \times C_3$$[\ ]_{3}^{6}$
\(3\) Copy content Toggle raw display Deg $18$$18$$1$$31$
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.3.0.1$x^{3} + 6 x^{2} + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
7.6.3.2$x^{6} + 12 x^{5} + 57 x^{4} + 176 x^{3} + 699 x^{2} + 420 x + 1787$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$