Properties

Label 18.0.204...368.1
Degree $18$
Signature $[0, 9]$
Discriminant $-2.050\times 10^{29}$
Root discriminant \(42.50\)
Ramified primes $2,3,7,43$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_3\times S_3^2$ (as 18T46)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 + 9*x^16 - 57*x^15 + 143*x^14 - 3*x^13 + 1674*x^12 + 1233*x^11 + 5724*x^10 + 2007*x^9 + 10875*x^8 + 1305*x^7 + 10340*x^6 + 858*x^5 + 5358*x^4 + 381*x^3 + 1558*x^2 + 165*x + 183)
 
gp: K = bnfinit(y^18 - 3*y^17 + 9*y^16 - 57*y^15 + 143*y^14 - 3*y^13 + 1674*y^12 + 1233*y^11 + 5724*y^10 + 2007*y^9 + 10875*y^8 + 1305*y^7 + 10340*y^6 + 858*y^5 + 5358*y^4 + 381*y^3 + 1558*y^2 + 165*y + 183, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 3*x^17 + 9*x^16 - 57*x^15 + 143*x^14 - 3*x^13 + 1674*x^12 + 1233*x^11 + 5724*x^10 + 2007*x^9 + 10875*x^8 + 1305*x^7 + 10340*x^6 + 858*x^5 + 5358*x^4 + 381*x^3 + 1558*x^2 + 165*x + 183);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 3*x^17 + 9*x^16 - 57*x^15 + 143*x^14 - 3*x^13 + 1674*x^12 + 1233*x^11 + 5724*x^10 + 2007*x^9 + 10875*x^8 + 1305*x^7 + 10340*x^6 + 858*x^5 + 5358*x^4 + 381*x^3 + 1558*x^2 + 165*x + 183)
 

\( x^{18} - 3 x^{17} + 9 x^{16} - 57 x^{15} + 143 x^{14} - 3 x^{13} + 1674 x^{12} + 1233 x^{11} + \cdots + 183 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-204985922317940382893914042368\) \(\medspace = -\,2^{12}\cdot 3^{9}\cdot 7^{6}\cdot 43^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(42.50\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{1/2}7^{2/3}43^{5/6}\approx 231.1371199229907$
Ramified primes:   \(2\), \(3\), \(7\), \(43\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $3$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{6}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{7}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{12}+\frac{1}{3}a^{8}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{9}+\frac{1}{3}a^{5}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{15}-\frac{1}{3}a^{3}$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{14}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{5}-\frac{4}{9}a^{4}-\frac{1}{9}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{36\!\cdots\!43}a^{17}-\frac{13\!\cdots\!53}{36\!\cdots\!43}a^{16}+\frac{20\!\cdots\!69}{36\!\cdots\!43}a^{15}+\frac{31\!\cdots\!10}{36\!\cdots\!43}a^{14}+\frac{10\!\cdots\!71}{12\!\cdots\!81}a^{13}-\frac{12\!\cdots\!04}{12\!\cdots\!81}a^{12}+\frac{17\!\cdots\!77}{40\!\cdots\!27}a^{11}-\frac{12\!\cdots\!11}{12\!\cdots\!81}a^{10}-\frac{39\!\cdots\!30}{12\!\cdots\!81}a^{9}+\frac{12\!\cdots\!85}{40\!\cdots\!27}a^{8}-\frac{12\!\cdots\!46}{40\!\cdots\!27}a^{7}+\frac{53\!\cdots\!33}{12\!\cdots\!81}a^{6}+\frac{14\!\cdots\!42}{36\!\cdots\!43}a^{5}+\frac{57\!\cdots\!32}{36\!\cdots\!43}a^{4}-\frac{83\!\cdots\!75}{36\!\cdots\!43}a^{3}-\frac{11\!\cdots\!63}{36\!\cdots\!43}a^{2}+\frac{16\!\cdots\!69}{40\!\cdots\!27}a-\frac{32\!\cdots\!19}{12\!\cdots\!81}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{149131692413739326}{37703520132935729883} a^{17} + \frac{473976989037599438}{37703520132935729883} a^{16} - \frac{1461017701596462538}{37703520132935729883} a^{15} + \frac{2960482522889615091}{12567840044311909961} a^{14} - \frac{7736448795665348035}{12567840044311909961} a^{13} + \frac{2169783114008740096}{12567840044311909961} a^{12} - \frac{85392600558717187811}{12567840044311909961} a^{11} - \frac{46351121725856008764}{12567840044311909961} a^{10} - \frac{292530515696235301892}{12567840044311909961} a^{9} - \frac{51723144029576407028}{12567840044311909961} a^{8} - \frac{557309903511451615850}{12567840044311909961} a^{7} + \frac{66395116999951970188}{12567840044311909961} a^{6} - \frac{1629414233231806567579}{37703520132935729883} a^{5} + \frac{355354514741260369567}{37703520132935729883} a^{4} - \frac{721259331143792675231}{37703520132935729883} a^{3} + \frac{56479911217287596864}{12567840044311909961} a^{2} - \frac{45730901114817469945}{12567840044311909961} a + \frac{17103887341629606118}{12567840044311909961} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{35\!\cdots\!26}{36\!\cdots\!43}a^{17}-\frac{10\!\cdots\!87}{36\!\cdots\!43}a^{16}+\frac{30\!\cdots\!95}{36\!\cdots\!43}a^{15}-\frac{19\!\cdots\!06}{36\!\cdots\!43}a^{14}+\frac{55\!\cdots\!13}{40\!\cdots\!27}a^{13}+\frac{17\!\cdots\!27}{12\!\cdots\!81}a^{12}+\frac{19\!\cdots\!38}{12\!\cdots\!81}a^{11}+\frac{15\!\cdots\!53}{12\!\cdots\!81}a^{10}+\frac{21\!\cdots\!82}{40\!\cdots\!27}a^{9}+\frac{73\!\cdots\!37}{40\!\cdots\!27}a^{8}+\frac{11\!\cdots\!93}{12\!\cdots\!81}a^{7}+\frac{77\!\cdots\!79}{12\!\cdots\!81}a^{6}+\frac{24\!\cdots\!65}{36\!\cdots\!43}a^{5}+\frac{89\!\cdots\!99}{36\!\cdots\!43}a^{4}+\frac{73\!\cdots\!39}{36\!\cdots\!43}a^{3}-\frac{71\!\cdots\!73}{36\!\cdots\!43}a^{2}+\frac{91\!\cdots\!70}{40\!\cdots\!27}a-\frac{40\!\cdots\!97}{12\!\cdots\!81}$, $\frac{11\!\cdots\!88}{12\!\cdots\!81}a^{17}-\frac{26\!\cdots\!09}{12\!\cdots\!81}a^{16}+\frac{79\!\cdots\!27}{12\!\cdots\!81}a^{15}-\frac{57\!\cdots\!14}{12\!\cdots\!81}a^{14}+\frac{12\!\cdots\!59}{12\!\cdots\!81}a^{13}+\frac{87\!\cdots\!06}{12\!\cdots\!81}a^{12}+\frac{18\!\cdots\!85}{12\!\cdots\!81}a^{11}+\frac{24\!\cdots\!03}{12\!\cdots\!81}a^{10}+\frac{71\!\cdots\!14}{12\!\cdots\!81}a^{9}+\frac{52\!\cdots\!37}{12\!\cdots\!81}a^{8}+\frac{12\!\cdots\!24}{12\!\cdots\!81}a^{7}+\frac{58\!\cdots\!97}{12\!\cdots\!81}a^{6}+\frac{34\!\cdots\!97}{40\!\cdots\!27}a^{5}+\frac{29\!\cdots\!86}{12\!\cdots\!81}a^{4}+\frac{42\!\cdots\!71}{12\!\cdots\!81}a^{3}+\frac{26\!\cdots\!61}{12\!\cdots\!81}a^{2}+\frac{17\!\cdots\!37}{40\!\cdots\!27}a-\frac{62\!\cdots\!18}{40\!\cdots\!27}$, $\frac{31\!\cdots\!46}{36\!\cdots\!43}a^{17}-\frac{36\!\cdots\!59}{12\!\cdots\!81}a^{16}+\frac{32\!\cdots\!70}{36\!\cdots\!43}a^{15}-\frac{63\!\cdots\!87}{12\!\cdots\!81}a^{14}+\frac{17\!\cdots\!36}{12\!\cdots\!81}a^{13}-\frac{22\!\cdots\!31}{40\!\cdots\!27}a^{12}+\frac{17\!\cdots\!25}{12\!\cdots\!81}a^{11}+\frac{11\!\cdots\!02}{40\!\cdots\!27}a^{10}+\frac{48\!\cdots\!79}{12\!\cdots\!81}a^{9}-\frac{50\!\cdots\!36}{40\!\cdots\!27}a^{8}+\frac{85\!\cdots\!15}{12\!\cdots\!81}a^{7}-\frac{18\!\cdots\!72}{40\!\cdots\!27}a^{6}+\frac{20\!\cdots\!11}{36\!\cdots\!43}a^{5}-\frac{58\!\cdots\!48}{12\!\cdots\!81}a^{4}+\frac{67\!\cdots\!75}{36\!\cdots\!43}a^{3}-\frac{30\!\cdots\!50}{12\!\cdots\!81}a^{2}+\frac{15\!\cdots\!16}{12\!\cdots\!81}a-\frac{18\!\cdots\!58}{40\!\cdots\!27}$, $\frac{12\!\cdots\!73}{36\!\cdots\!43}a^{17}-\frac{42\!\cdots\!91}{36\!\cdots\!43}a^{16}+\frac{12\!\cdots\!36}{36\!\cdots\!43}a^{15}-\frac{73\!\cdots\!13}{36\!\cdots\!43}a^{14}+\frac{68\!\cdots\!46}{12\!\cdots\!81}a^{13}-\frac{25\!\cdots\!91}{12\!\cdots\!81}a^{12}+\frac{65\!\cdots\!02}{12\!\cdots\!81}a^{11}+\frac{16\!\cdots\!84}{12\!\cdots\!81}a^{10}+\frac{19\!\cdots\!54}{12\!\cdots\!81}a^{9}-\frac{27\!\cdots\!16}{12\!\cdots\!81}a^{8}+\frac{35\!\cdots\!01}{12\!\cdots\!81}a^{7}-\frac{12\!\cdots\!83}{12\!\cdots\!81}a^{6}+\frac{91\!\cdots\!94}{36\!\cdots\!43}a^{5}-\frac{20\!\cdots\!34}{36\!\cdots\!43}a^{4}+\frac{29\!\cdots\!20}{36\!\cdots\!43}a^{3}-\frac{12\!\cdots\!39}{36\!\cdots\!43}a^{2}+\frac{51\!\cdots\!00}{40\!\cdots\!27}a-\frac{28\!\cdots\!14}{12\!\cdots\!81}$, $\frac{10\!\cdots\!76}{36\!\cdots\!43}a^{17}-\frac{41\!\cdots\!27}{12\!\cdots\!81}a^{16}+\frac{31\!\cdots\!93}{36\!\cdots\!43}a^{15}-\frac{40\!\cdots\!70}{12\!\cdots\!81}a^{14}+\frac{69\!\cdots\!35}{40\!\cdots\!27}a^{13}-\frac{11\!\cdots\!95}{40\!\cdots\!27}a^{12}+\frac{85\!\cdots\!40}{40\!\cdots\!27}a^{11}-\frac{48\!\cdots\!52}{12\!\cdots\!81}a^{10}-\frac{51\!\cdots\!69}{12\!\cdots\!81}a^{9}-\frac{61\!\cdots\!40}{40\!\cdots\!27}a^{8}-\frac{36\!\cdots\!44}{40\!\cdots\!27}a^{7}-\frac{31\!\cdots\!69}{12\!\cdots\!81}a^{6}-\frac{40\!\cdots\!43}{36\!\cdots\!43}a^{5}-\frac{23\!\cdots\!16}{12\!\cdots\!81}a^{4}-\frac{24\!\cdots\!78}{36\!\cdots\!43}a^{3}-\frac{75\!\cdots\!33}{12\!\cdots\!81}a^{2}-\frac{13\!\cdots\!21}{12\!\cdots\!81}a-\frac{10\!\cdots\!81}{40\!\cdots\!27}$, $\frac{90\!\cdots\!22}{36\!\cdots\!43}a^{17}-\frac{83\!\cdots\!63}{12\!\cdots\!81}a^{16}+\frac{74\!\cdots\!55}{36\!\cdots\!43}a^{15}-\frac{16\!\cdots\!53}{12\!\cdots\!81}a^{14}+\frac{38\!\cdots\!74}{12\!\cdots\!81}a^{13}+\frac{10\!\cdots\!62}{12\!\cdots\!81}a^{12}+\frac{16\!\cdots\!26}{40\!\cdots\!27}a^{11}+\frac{16\!\cdots\!09}{40\!\cdots\!27}a^{10}+\frac{17\!\cdots\!54}{12\!\cdots\!81}a^{9}+\frac{10\!\cdots\!37}{12\!\cdots\!81}a^{8}+\frac{10\!\cdots\!49}{40\!\cdots\!27}a^{7}+\frac{38\!\cdots\!61}{40\!\cdots\!27}a^{6}+\frac{84\!\cdots\!41}{36\!\cdots\!43}a^{5}+\frac{11\!\cdots\!66}{12\!\cdots\!81}a^{4}+\frac{34\!\cdots\!29}{36\!\cdots\!43}a^{3}+\frac{59\!\cdots\!49}{12\!\cdots\!81}a^{2}+\frac{21\!\cdots\!01}{12\!\cdots\!81}a+\frac{62\!\cdots\!37}{40\!\cdots\!27}$, $\frac{88\!\cdots\!52}{36\!\cdots\!43}a^{17}-\frac{29\!\cdots\!14}{36\!\cdots\!43}a^{16}+\frac{86\!\cdots\!81}{36\!\cdots\!43}a^{15}-\frac{52\!\cdots\!01}{36\!\cdots\!43}a^{14}+\frac{47\!\cdots\!98}{12\!\cdots\!81}a^{13}-\frac{10\!\cdots\!48}{12\!\cdots\!81}a^{12}+\frac{47\!\cdots\!52}{12\!\cdots\!81}a^{11}+\frac{56\!\cdots\!58}{40\!\cdots\!27}a^{10}+\frac{13\!\cdots\!24}{12\!\cdots\!81}a^{9}-\frac{78\!\cdots\!64}{40\!\cdots\!27}a^{8}+\frac{23\!\cdots\!52}{12\!\cdots\!81}a^{7}-\frac{34\!\cdots\!01}{40\!\cdots\!27}a^{6}+\frac{57\!\cdots\!84}{36\!\cdots\!43}a^{5}-\frac{26\!\cdots\!09}{36\!\cdots\!43}a^{4}+\frac{20\!\cdots\!87}{36\!\cdots\!43}a^{3}-\frac{65\!\cdots\!98}{36\!\cdots\!43}a^{2}+\frac{24\!\cdots\!05}{40\!\cdots\!27}a-\frac{37\!\cdots\!17}{12\!\cdots\!81}$, $\frac{29\!\cdots\!31}{36\!\cdots\!43}a^{17}+\frac{31\!\cdots\!17}{36\!\cdots\!43}a^{16}-\frac{85\!\cdots\!39}{36\!\cdots\!43}a^{15}+\frac{13\!\cdots\!22}{36\!\cdots\!43}a^{14}-\frac{19\!\cdots\!49}{40\!\cdots\!27}a^{13}+\frac{16\!\cdots\!89}{12\!\cdots\!81}a^{12}+\frac{86\!\cdots\!07}{40\!\cdots\!27}a^{11}+\frac{22\!\cdots\!64}{12\!\cdots\!81}a^{10}+\frac{87\!\cdots\!38}{40\!\cdots\!27}a^{9}+\frac{65\!\cdots\!32}{12\!\cdots\!81}a^{8}+\frac{11\!\cdots\!79}{40\!\cdots\!27}a^{7}+\frac{96\!\cdots\!19}{12\!\cdots\!81}a^{6}+\frac{79\!\cdots\!24}{36\!\cdots\!43}a^{5}+\frac{17\!\cdots\!19}{36\!\cdots\!43}a^{4}+\frac{31\!\cdots\!41}{36\!\cdots\!43}a^{3}+\frac{64\!\cdots\!50}{36\!\cdots\!43}a^{2}+\frac{11\!\cdots\!42}{40\!\cdots\!27}a+\frac{27\!\cdots\!25}{12\!\cdots\!81}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 55890127.22994664 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 55890127.22994664 \cdot 3}{6\cdot\sqrt{204985922317940382893914042368}}\cr\approx \mathstrut & 0.942023852880126 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 + 9*x^16 - 57*x^15 + 143*x^14 - 3*x^13 + 1674*x^12 + 1233*x^11 + 5724*x^10 + 2007*x^9 + 10875*x^8 + 1305*x^7 + 10340*x^6 + 858*x^5 + 5358*x^4 + 381*x^3 + 1558*x^2 + 165*x + 183)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 3*x^17 + 9*x^16 - 57*x^15 + 143*x^14 - 3*x^13 + 1674*x^12 + 1233*x^11 + 5724*x^10 + 2007*x^9 + 10875*x^8 + 1305*x^7 + 10340*x^6 + 858*x^5 + 5358*x^4 + 381*x^3 + 1558*x^2 + 165*x + 183, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 3*x^17 + 9*x^16 - 57*x^15 + 143*x^14 - 3*x^13 + 1674*x^12 + 1233*x^11 + 5724*x^10 + 2007*x^9 + 10875*x^8 + 1305*x^7 + 10340*x^6 + 858*x^5 + 5358*x^4 + 381*x^3 + 1558*x^2 + 165*x + 183);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 3*x^17 + 9*x^16 - 57*x^15 + 143*x^14 - 3*x^13 + 1674*x^12 + 1233*x^11 + 5724*x^10 + 2007*x^9 + 10875*x^8 + 1305*x^7 + 10340*x^6 + 858*x^5 + 5358*x^4 + 381*x^3 + 1558*x^2 + 165*x + 183);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3\times S_3^2$ (as 18T46):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 108
The 27 conjugacy class representatives for $C_3\times S_3^2$
Character table for $C_3\times S_3^2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.172.1, 6.0.2446227.1, 6.0.798768.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 12.0.5237298151345428666624.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{3}$ R ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.3.0.1}{3} }^{6}$ ${\href{/padicField/17.6.0.1}{6} }^{3}$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{3}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }^{3}$ R ${\href{/padicField/47.6.0.1}{6} }^{3}$ ${\href{/padicField/53.6.0.1}{6} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.18.12.1$x^{18} + 10 x^{16} + 12 x^{15} + 28 x^{14} + 100 x^{13} + 92 x^{12} + 224 x^{11} + 640 x^{10} + 352 x^{9} + 736 x^{8} + 1760 x^{7} + 688 x^{6} + 1024 x^{5} + 1760 x^{4} + 448 x^{3} + 448 x^{2} + 320 x + 64$$3$$6$$12$$S_3 \times C_3$$[\ ]_{3}^{6}$
\(3\) Copy content Toggle raw display 3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(7\) Copy content Toggle raw display 7.3.0.1$x^{3} + 6 x^{2} + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
7.3.2.1$x^{3} + 14$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.4.2$x^{6} - 42 x^{3} + 147$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.0.1$x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
\(43\) Copy content Toggle raw display 43.3.2.2$x^{3} + 301$$3$$1$$2$$C_3$$[\ ]_{3}$
43.3.0.1$x^{3} + x + 40$$1$$3$$0$$C_3$$[\ ]^{3}$
43.6.3.2$x^{6} + 131 x^{4} + 80 x^{3} + 5548 x^{2} - 10240 x + 77452$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
43.6.5.4$x^{6} + 387$$6$$1$$5$$C_6$$[\ ]_{6}$