# Properties

 Label 18.0.16369786239...8043.1 Degree $18$ Signature $[0, 9]$ Discriminant $-\,3^{30}\cdot 43^{3}$ Root discriminant $11.68$ Ramified primes $3, 43$ Class number $1$ Class group Trivial Galois Group $C_3\times S_3\wr C_2$ (as 18T93)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, -12, 0, 0, 33, 0, 0, 20, 0, 0, -3, 0, 0, -3, 0, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^15 - 3*x^12 + 20*x^9 + 33*x^6 - 12*x^3 + 1)
gp: K = bnfinit(x^18 - 3*x^15 - 3*x^12 + 20*x^9 + 33*x^6 - 12*x^3 + 1, 1)

## Normalizeddefining polynomial

$$x^{18}$$ $$\mathstrut -\mathstrut 3 x^{15}$$ $$\mathstrut -\mathstrut 3 x^{12}$$ $$\mathstrut +\mathstrut 20 x^{9}$$ $$\mathstrut +\mathstrut 33 x^{6}$$ $$\mathstrut -\mathstrut 12 x^{3}$$ $$\mathstrut +\mathstrut 1$$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $18$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[0, 9]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $$-16369786239449258043=-\,3^{30}\cdot 43^{3}$$ magma: Discriminant(K); sage: K.disc() gp: K.disc Root discriminant: $11.68$ magma: Abs(Discriminant(K))^(1/Degree(K)); sage: (K.disc().abs())^(1./K.degree()) gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $3, 43$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{4} + \frac{1}{9} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{5} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{9} + \frac{1}{9} a^{6} - \frac{1}{9}$, $\frac{1}{27} a^{16} + \frac{1}{27} a^{15} - \frac{1}{27} a^{13} - \frac{1}{27} a^{12} + \frac{1}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{27} a^{7} + \frac{1}{27} a^{6} - \frac{1}{27} a^{4} - \frac{1}{27} a^{3} + \frac{1}{27} a + \frac{1}{27}$, $\frac{1}{27} a^{17} - \frac{1}{27} a^{15} - \frac{1}{27} a^{14} + \frac{1}{27} a^{12} + \frac{1}{27} a^{11} - \frac{1}{27} a^{9} + \frac{1}{27} a^{8} - \frac{1}{27} a^{6} - \frac{1}{27} a^{5} + \frac{1}{27} a^{3} + \frac{1}{27} a^{2} - \frac{1}{27}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $8$ magma: UnitRank(K); sage: UK.rank() gp: K.fu Torsion generator: $$\frac{38}{9} a^{16} - 12 a^{13} - \frac{131}{9} a^{10} + \frac{740}{9} a^{7} + 152 a^{4} - \frac{239}{9} a$$ (order $18$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental units: $$\frac{4}{9} a^{15} - \frac{11}{9} a^{12} - \frac{5}{3} a^{9} + \frac{79}{9} a^{6} + \frac{148}{9} a^{3} - \frac{7}{3}$$,  $$4 a^{17} + \frac{28}{27} a^{16} - \frac{26}{27} a^{15} - \frac{34}{3} a^{14} - \frac{79}{27} a^{13} + \frac{74}{27} a^{12} - \frac{125}{9} a^{11} - \frac{98}{27} a^{10} + \frac{88}{27} a^{9} + \frac{233}{3} a^{8} + \frac{541}{27} a^{7} - \frac{503}{27} a^{6} + 145 a^{5} + \frac{1028}{27} a^{4} - \frac{934}{27} a^{3} - \frac{218}{9} a^{2} - \frac{152}{27} a + \frac{151}{27}$$,  $$\frac{11}{3} a^{17} - \frac{28}{27} a^{16} + \frac{8}{27} a^{15} - \frac{94}{9} a^{14} + \frac{79}{27} a^{13} - \frac{23}{27} a^{12} - \frac{113}{9} a^{11} + \frac{98}{27} a^{10} - \frac{28}{27} a^{9} + \frac{214}{3} a^{8} - \frac{541}{27} a^{7} + \frac{161}{27} a^{6} + \frac{1187}{9} a^{5} - \frac{1028}{27} a^{4} + \frac{283}{27} a^{3} - \frac{215}{9} a^{2} + \frac{152}{27} a - \frac{64}{27}$$,  $$\frac{13}{9} a^{15} - \frac{37}{9} a^{12} - \frac{44}{9} a^{9} + \frac{250}{9} a^{6} + \frac{473}{9} a^{3} - \frac{77}{9}$$,  $$\frac{73}{27} a^{17} + \frac{43}{27} a^{16} - \frac{208}{27} a^{14} - \frac{121}{27} a^{13} - \frac{251}{27} a^{11} - \frac{152}{27} a^{10} + \frac{1423}{27} a^{8} + \frac{835}{27} a^{7} + \frac{2627}{27} a^{5} + \frac{1571}{27} a^{4} - \frac{494}{27} a^{2} - \frac{224}{27} a$$,  $$\frac{107}{27} a^{17} - \frac{46}{27} a^{16} - \frac{2}{3} a^{15} - \frac{305}{27} a^{14} + \frac{130}{27} a^{13} + \frac{17}{9} a^{12} - \frac{367}{27} a^{11} + \frac{161}{27} a^{10} + \frac{7}{3} a^{9} + \frac{2087}{27} a^{8} - \frac{892}{27} a^{7} - 13 a^{6} + \frac{3844}{27} a^{5} - \frac{1670}{27} a^{4} - \frac{214}{9} a^{3} - \frac{709}{27} a^{2} + \frac{260}{27} a + 4$$,  $$\frac{100}{27} a^{17} + 4 a^{16} + \frac{26}{27} a^{15} - \frac{283}{27} a^{14} - \frac{34}{3} a^{13} - \frac{74}{27} a^{12} - \frac{347}{27} a^{11} - \frac{125}{9} a^{10} - \frac{88}{27} a^{9} + \frac{1936}{27} a^{8} + \frac{233}{3} a^{7} + \frac{503}{27} a^{6} + \frac{3632}{27} a^{5} + 145 a^{4} + \frac{934}{27} a^{3} - \frac{563}{27} a^{2} - \frac{218}{9} a - \frac{151}{27}$$,  $$\frac{71}{27} a^{16} - \frac{43}{27} a^{15} - \frac{203}{27} a^{13} + \frac{121}{27} a^{12} - \frac{241}{27} a^{10} + \frac{152}{27} a^{9} + \frac{1385}{27} a^{7} - \frac{835}{27} a^{6} + \frac{2533}{27} a^{4} - \frac{1571}{27} a^{3} - \frac{493}{27} a + \frac{251}{27}$$ magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $$1206.62977052$$ magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A solvable group of order 216 The 27 conjugacy class representatives for $C_3\times S_3\wr C_2$ Character table for $C_3\times S_3\wr C_2$ is not computed

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Degree 12 siblings: data not computed Degree 18 sibling: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }$ R ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$43$43.3.0.1$x^{3} - x + 10$$1$$3$$0$$C_3$$[\ ]^{3} 43.3.0.1x^{3} - x + 10$$1$$3$$0$$C_3$$[\ ]^{3}$
43.6.3.1$x^{6} - 86 x^{4} + 1849 x^{2} - 7950700$$2$$3$$3$$C_6$$[\ ]_{2}^{3} 43.6.0.1x^{6} - x + 26$$1$$6$$0$$C_6$$[\ ]^{6}$