Properties

Label 18.0.14172006159...9707.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,23^{6}\cdot 43^{3}\cdot 347^{2}$
Root discriminant $10.20$
Ramified primes $23, 43, 347$
Class number $1$
Class group Trivial
Galois Group 18T556

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 13, -23, 30, -32, 31, -32, 36, -38, 36, -29, 21, -15, 12, -9, 6, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 + 6*x^16 - 9*x^15 + 12*x^14 - 15*x^13 + 21*x^12 - 29*x^11 + 36*x^10 - 38*x^9 + 36*x^8 - 32*x^7 + 31*x^6 - 32*x^5 + 30*x^4 - 23*x^3 + 13*x^2 - 5*x + 1)
gp: K = bnfinit(x^18 - 3*x^17 + 6*x^16 - 9*x^15 + 12*x^14 - 15*x^13 + 21*x^12 - 29*x^11 + 36*x^10 - 38*x^9 + 36*x^8 - 32*x^7 + 31*x^6 - 32*x^5 + 30*x^4 - 23*x^3 + 13*x^2 - 5*x + 1, 1)

Normalized defining polynomial

\(x^{18} \) \(\mathstrut -\mathstrut 3 x^{17} \) \(\mathstrut +\mathstrut 6 x^{16} \) \(\mathstrut -\mathstrut 9 x^{15} \) \(\mathstrut +\mathstrut 12 x^{14} \) \(\mathstrut -\mathstrut 15 x^{13} \) \(\mathstrut +\mathstrut 21 x^{12} \) \(\mathstrut -\mathstrut 29 x^{11} \) \(\mathstrut +\mathstrut 36 x^{10} \) \(\mathstrut -\mathstrut 38 x^{9} \) \(\mathstrut +\mathstrut 36 x^{8} \) \(\mathstrut -\mathstrut 32 x^{7} \) \(\mathstrut +\mathstrut 31 x^{6} \) \(\mathstrut -\mathstrut 32 x^{5} \) \(\mathstrut +\mathstrut 30 x^{4} \) \(\mathstrut -\mathstrut 23 x^{3} \) \(\mathstrut +\mathstrut 13 x^{2} \) \(\mathstrut -\mathstrut 5 x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $18$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 9]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-1417200615982289707=-\,23^{6}\cdot 43^{3}\cdot 347^{2}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $10.20$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $23, 43, 347$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $8$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( 26 a^{17} - 60 a^{16} + 115 a^{15} - 155 a^{14} + 206 a^{13} - 249 a^{12} + 376 a^{11} - 496 a^{10} + 597 a^{9} - 580 a^{8} + 541 a^{7} - 463 a^{6} + 491 a^{5} - 496 a^{4} + 442 a^{3} - 298 a^{2} + 137 a - 38 \),  \( a \),  \( 38 a^{17} - 89 a^{16} + 170 a^{15} - 230 a^{14} + 304 a^{13} - 368 a^{12} + 554 a^{11} - 735 a^{10} + 883 a^{9} - 858 a^{8} + 796 a^{7} - 683 a^{6} + 722 a^{5} - 735 a^{4} + 653 a^{3} - 438 a^{2} + 198 a - 54 \),  \( 28 a^{17} - 63 a^{16} + 119 a^{15} - 160 a^{14} + 212 a^{13} - 256 a^{12} + 389 a^{11} - 512 a^{10} + 610 a^{9} - 590 a^{8} + 549 a^{7} - 470 a^{6} + 501 a^{5} - 508 a^{4} + 445 a^{3} - 297 a^{2} + 133 a - 36 \),  \( 47 a^{17} - 109 a^{16} + 207 a^{15} - 279 a^{14} + 369 a^{13} - 447 a^{12} + 675 a^{11} - 893 a^{10} + 1069 a^{9} - 1036 a^{8} + 962 a^{7} - 826 a^{6} + 876 a^{5} - 889 a^{4} + 785 a^{3} - 525 a^{2} + 237 a - 64 \),  \( 13 a^{17} - 29 a^{16} + 56 a^{15} - 75 a^{14} + 100 a^{13} - 120 a^{12} + 183 a^{11} - 240 a^{10} + 289 a^{9} - 279 a^{8} + 261 a^{7} - 222 a^{6} + 238 a^{5} - 240 a^{4} + 213 a^{3} - 141 a^{2} + 64 a - 18 \),  \( 26 a^{17} - 58 a^{16} + 112 a^{15} - 150 a^{14} + 200 a^{13} - 241 a^{12} + 366 a^{11} - 479 a^{10} + 577 a^{9} - 559 a^{8} + 522 a^{7} - 445 a^{6} + 475 a^{5} - 477 a^{4} + 424 a^{3} - 286 a^{2} + 129 a - 36 \),  \( 11 a^{17} - 27 a^{16} + 52 a^{15} - 71 a^{14} + 94 a^{13} - 114 a^{12} + 170 a^{11} - 227 a^{10} + 275 a^{9} - 269 a^{8} + 250 a^{7} - 215 a^{6} + 225 a^{5} - 229 a^{4} + 207 a^{3} - 140 a^{2} + 66 a - 18 \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 24.7750980478 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

18T556:

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 10368
The 98 conjugacy class representatives for t18n556 are not computed
Character table for t18n556 is not computed

Intermediate fields

3.1.23.1, 6.0.22747.1, 9.3.181543807.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$43$43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.4.0.1$x^{4} - x + 20$$1$$4$$0$$C_4$$[\ ]^{4}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$
43.4.0.1$x^{4} - x + 20$$1$$4$$0$$C_4$$[\ ]^{4}$
347Data not computed