Properties

Label 18.0.127...408.1
Degree $18$
Signature $[0, 9]$
Discriminant $-1.272\times 10^{32}$
Root discriminant \(60.75\)
Ramified primes $2,3,151$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3\times S_3^2$ (as 18T46)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 + 10*x^16 + 91*x^15 + 151*x^14 + 34*x^13 + 3415*x^12 + 14395*x^11 + 29125*x^10 - 21192*x^9 - 97073*x^8 - 90513*x^7 + 153009*x^6 + 344700*x^5 - 49059*x^4 - 421497*x^3 - 92718*x^2 + 222021*x + 111051)
 
gp: K = bnfinit(y^18 - 3*y^17 + 10*y^16 + 91*y^15 + 151*y^14 + 34*y^13 + 3415*y^12 + 14395*y^11 + 29125*y^10 - 21192*y^9 - 97073*y^8 - 90513*y^7 + 153009*y^6 + 344700*y^5 - 49059*y^4 - 421497*y^3 - 92718*y^2 + 222021*y + 111051, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 3*x^17 + 10*x^16 + 91*x^15 + 151*x^14 + 34*x^13 + 3415*x^12 + 14395*x^11 + 29125*x^10 - 21192*x^9 - 97073*x^8 - 90513*x^7 + 153009*x^6 + 344700*x^5 - 49059*x^4 - 421497*x^3 - 92718*x^2 + 222021*x + 111051);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 3*x^17 + 10*x^16 + 91*x^15 + 151*x^14 + 34*x^13 + 3415*x^12 + 14395*x^11 + 29125*x^10 - 21192*x^9 - 97073*x^8 - 90513*x^7 + 153009*x^6 + 344700*x^5 - 49059*x^4 - 421497*x^3 - 92718*x^2 + 222021*x + 111051)
 

\( x^{18} - 3 x^{17} + 10 x^{16} + 91 x^{15} + 151 x^{14} + 34 x^{13} + 3415 x^{12} + 14395 x^{11} + \cdots + 111051 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-127192258415404127890787986833408\) \(\medspace = -\,2^{20}\cdot 3^{9}\cdot 151^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(60.75\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{4/3}3^{1/2}151^{5/6}\approx 285.5933413976806$
Ramified primes:   \(2\), \(3\), \(151\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $3$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{9}a^{8}-\frac{1}{9}a^{7}+\frac{1}{9}a^{6}+\frac{2}{9}a^{5}+\frac{4}{9}a^{4}-\frac{1}{9}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{9}a^{9}-\frac{1}{3}a^{5}-\frac{4}{9}a^{3}-\frac{1}{3}a$, $\frac{1}{9}a^{10}-\frac{1}{9}a^{4}$, $\frac{1}{27}a^{11}+\frac{1}{27}a^{10}-\frac{1}{27}a^{9}+\frac{1}{27}a^{8}+\frac{2}{27}a^{7}+\frac{4}{27}a^{6}+\frac{7}{27}a^{5}+\frac{2}{9}a^{4}-\frac{1}{9}a^{3}+\frac{1}{3}a$, $\frac{1}{54}a^{12}-\frac{1}{54}a^{11}-\frac{1}{18}a^{10}-\frac{1}{18}a^{8}+\frac{1}{18}a^{7}-\frac{2}{27}a^{6}-\frac{5}{54}a^{5}-\frac{1}{2}a^{4}-\frac{1}{9}a^{3}-\frac{1}{6}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{54}a^{13}+\frac{1}{54}a^{10}-\frac{1}{54}a^{9}-\frac{1}{27}a^{8}-\frac{5}{54}a^{7}+\frac{1}{54}a^{6}+\frac{1}{27}a^{5}+\frac{7}{18}a^{4}-\frac{1}{6}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{486}a^{14}-\frac{1}{486}a^{13}+\frac{1}{486}a^{12}-\frac{1}{243}a^{11}+\frac{23}{486}a^{10}-\frac{5}{486}a^{9}+\frac{8}{243}a^{8}-\frac{55}{486}a^{7}-\frac{5}{486}a^{6}+\frac{32}{81}a^{5}-\frac{7}{162}a^{4}-\frac{17}{54}a^{3}-\frac{23}{54}a^{2}+\frac{4}{9}a-\frac{1}{3}$, $\frac{1}{486}a^{15}-\frac{1}{486}a^{12}+\frac{1}{162}a^{11}-\frac{25}{486}a^{9}-\frac{1}{162}a^{8}+\frac{2}{81}a^{7}+\frac{7}{486}a^{6}-\frac{1}{54}a^{5}-\frac{38}{81}a^{4}+\frac{1}{27}a^{3}+\frac{19}{54}a^{2}-\frac{2}{9}a-\frac{1}{3}$, $\frac{1}{3402}a^{16}-\frac{1}{3402}a^{14}+\frac{1}{189}a^{13}+\frac{10}{1701}a^{12}-\frac{17}{1701}a^{11}+\frac{1}{567}a^{10}+\frac{82}{1701}a^{9}+\frac{79}{1701}a^{8}+\frac{184}{1701}a^{7}-\frac{11}{1701}a^{6}+\frac{260}{567}a^{5}-\frac{113}{1134}a^{4}+\frac{8}{21}a^{3}-\frac{43}{378}a^{2}-\frac{13}{63}a-\frac{8}{21}$, $\frac{1}{20\!\cdots\!42}a^{17}-\frac{23\!\cdots\!89}{15\!\cdots\!34}a^{16}+\frac{88\!\cdots\!77}{20\!\cdots\!42}a^{15}-\frac{22\!\cdots\!39}{34\!\cdots\!07}a^{14}-\frac{74\!\cdots\!94}{14\!\cdots\!03}a^{13}-\frac{37\!\cdots\!70}{10\!\cdots\!21}a^{12}+\frac{10\!\cdots\!29}{68\!\cdots\!14}a^{11}+\frac{11\!\cdots\!15}{20\!\cdots\!42}a^{10}-\frac{58\!\cdots\!69}{10\!\cdots\!21}a^{9}+\frac{65\!\cdots\!45}{20\!\cdots\!42}a^{8}+\frac{42\!\cdots\!05}{36\!\cdots\!26}a^{7}-\frac{27\!\cdots\!82}{34\!\cdots\!07}a^{6}+\frac{91\!\cdots\!22}{11\!\cdots\!69}a^{5}+\frac{76\!\cdots\!38}{57\!\cdots\!31}a^{4}+\frac{22\!\cdots\!71}{36\!\cdots\!26}a^{3}-\frac{57\!\cdots\!65}{25\!\cdots\!82}a^{2}-\frac{21\!\cdots\!79}{65\!\cdots\!38}a-\frac{70\!\cdots\!05}{14\!\cdots\!49}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{297315354830625725}{2182365564981978672063} a^{17} + \frac{1214305770600668876}{2182365564981978672063} a^{16} - \frac{8473984410150345367}{4364731129963957344126} a^{15} - \frac{45362029987017806209}{4364731129963957344126} a^{14} - \frac{39000447423334776965}{4364731129963957344126} a^{13} + \frac{14869738806380916730}{2182365564981978672063} a^{12} - \frac{2055594753431207547001}{4364731129963957344126} a^{11} - \frac{6331028965883345065769}{4364731129963957344126} a^{10} - \frac{5041295140694853050192}{2182365564981978672063} a^{9} + \frac{8210584184673992140823}{1454910376654652448042} a^{8} + \frac{10994171243113242672469}{1454910376654652448042} a^{7} + \frac{800586997084220703217}{242485062775775408007} a^{6} - \frac{12287494082943167480429}{484970125551550816014} a^{5} - \frac{3300969313035205355117}{161656708517183605338} a^{4} + \frac{5287346800635609458101}{161656708517183605338} a^{3} + \frac{669343280074647520630}{26942784752863934223} a^{2} - \frac{481667236537586183171}{26942784752863934223} a - \frac{109867102990607432974}{8980928250954644741} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{55\!\cdots\!82}{43\!\cdots\!99}a^{17}-\frac{49\!\cdots\!25}{86\!\cdots\!98}a^{16}+\frac{63\!\cdots\!05}{32\!\cdots\!74}a^{15}+\frac{40\!\cdots\!75}{43\!\cdots\!99}a^{14}+\frac{29\!\cdots\!46}{61\!\cdots\!57}a^{13}-\frac{34\!\cdots\!09}{28\!\cdots\!66}a^{12}+\frac{19\!\cdots\!50}{43\!\cdots\!99}a^{11}+\frac{10\!\cdots\!75}{86\!\cdots\!98}a^{10}+\frac{46\!\cdots\!35}{28\!\cdots\!66}a^{9}-\frac{28\!\cdots\!20}{43\!\cdots\!99}a^{8}-\frac{78\!\cdots\!63}{12\!\cdots\!14}a^{7}-\frac{16\!\cdots\!27}{28\!\cdots\!66}a^{6}+\frac{39\!\cdots\!82}{14\!\cdots\!33}a^{5}+\frac{36\!\cdots\!71}{24\!\cdots\!89}a^{4}-\frac{38\!\cdots\!17}{98\!\cdots\!39}a^{3}-\frac{32\!\cdots\!31}{16\!\cdots\!37}a^{2}+\frac{22\!\cdots\!39}{10\!\cdots\!58}a+\frac{19\!\cdots\!80}{17\!\cdots\!93}$, $\frac{40\!\cdots\!67}{41\!\cdots\!58}a^{17}-\frac{12\!\cdots\!85}{32\!\cdots\!66}a^{16}+\frac{28\!\cdots\!98}{20\!\cdots\!29}a^{15}+\frac{10\!\cdots\!01}{13\!\cdots\!86}a^{14}+\frac{27\!\cdots\!31}{41\!\cdots\!58}a^{13}-\frac{89\!\cdots\!70}{20\!\cdots\!29}a^{12}+\frac{23\!\cdots\!76}{69\!\cdots\!43}a^{11}+\frac{21\!\cdots\!56}{20\!\cdots\!29}a^{10}+\frac{35\!\cdots\!56}{20\!\cdots\!29}a^{9}-\frac{81\!\cdots\!11}{20\!\cdots\!29}a^{8}-\frac{37\!\cdots\!69}{69\!\cdots\!43}a^{7}-\frac{18\!\cdots\!93}{69\!\cdots\!43}a^{6}+\frac{91\!\cdots\!81}{51\!\cdots\!18}a^{5}+\frac{35\!\cdots\!09}{23\!\cdots\!38}a^{4}-\frac{57\!\cdots\!08}{25\!\cdots\!09}a^{3}-\frac{27\!\cdots\!55}{15\!\cdots\!54}a^{2}+\frac{46\!\cdots\!11}{39\!\cdots\!86}a+\frac{79\!\cdots\!39}{86\!\cdots\!03}$, $\frac{11\!\cdots\!25}{13\!\cdots\!86}a^{17}-\frac{79\!\cdots\!17}{35\!\cdots\!74}a^{16}+\frac{56\!\cdots\!19}{69\!\cdots\!43}a^{15}+\frac{10\!\cdots\!41}{13\!\cdots\!86}a^{14}+\frac{66\!\cdots\!17}{46\!\cdots\!62}a^{13}+\frac{79\!\cdots\!59}{69\!\cdots\!43}a^{12}+\frac{19\!\cdots\!11}{69\!\cdots\!43}a^{11}+\frac{93\!\cdots\!67}{77\!\cdots\!27}a^{10}+\frac{19\!\cdots\!80}{69\!\cdots\!43}a^{9}-\frac{15\!\cdots\!87}{69\!\cdots\!43}a^{8}-\frac{47\!\cdots\!86}{77\!\cdots\!27}a^{7}-\frac{73\!\cdots\!34}{69\!\cdots\!43}a^{6}+\frac{54\!\cdots\!05}{15\!\cdots\!54}a^{5}+\frac{49\!\cdots\!83}{23\!\cdots\!38}a^{4}+\frac{66\!\cdots\!87}{77\!\cdots\!27}a^{3}-\frac{19\!\cdots\!43}{15\!\cdots\!54}a^{2}-\frac{43\!\cdots\!73}{39\!\cdots\!86}a-\frac{23\!\cdots\!63}{86\!\cdots\!03}$, $\frac{84\!\cdots\!35}{20\!\cdots\!42}a^{17}-\frac{11\!\cdots\!62}{79\!\cdots\!17}a^{16}+\frac{98\!\cdots\!09}{20\!\cdots\!42}a^{15}+\frac{13\!\cdots\!14}{38\!\cdots\!23}a^{14}+\frac{12\!\cdots\!79}{29\!\cdots\!06}a^{13}-\frac{12\!\cdots\!62}{10\!\cdots\!21}a^{12}+\frac{48\!\cdots\!11}{34\!\cdots\!07}a^{11}+\frac{10\!\cdots\!27}{20\!\cdots\!42}a^{10}+\frac{18\!\cdots\!25}{20\!\cdots\!42}a^{9}-\frac{14\!\cdots\!83}{10\!\cdots\!21}a^{8}-\frac{32\!\cdots\!45}{97\!\cdots\!02}a^{7}-\frac{13\!\cdots\!39}{84\!\cdots\!94}a^{6}+\frac{16\!\cdots\!93}{22\!\cdots\!38}a^{5}+\frac{39\!\cdots\!57}{38\!\cdots\!54}a^{4}-\frac{15\!\cdots\!90}{18\!\cdots\!63}a^{3}-\frac{48\!\cdots\!50}{38\!\cdots\!23}a^{2}+\frac{44\!\cdots\!26}{97\!\cdots\!57}a+\frac{57\!\cdots\!77}{84\!\cdots\!94}$, $\frac{12\!\cdots\!04}{14\!\cdots\!03}a^{17}-\frac{12\!\cdots\!87}{32\!\cdots\!66}a^{16}+\frac{19\!\cdots\!76}{14\!\cdots\!03}a^{15}+\frac{30\!\cdots\!65}{48\!\cdots\!01}a^{14}+\frac{12\!\cdots\!15}{29\!\cdots\!06}a^{13}-\frac{13\!\cdots\!99}{14\!\cdots\!03}a^{12}+\frac{27\!\cdots\!77}{97\!\cdots\!02}a^{11}+\frac{12\!\cdots\!35}{14\!\cdots\!03}a^{10}+\frac{34\!\cdots\!51}{29\!\cdots\!06}a^{9}-\frac{14\!\cdots\!75}{29\!\cdots\!06}a^{8}-\frac{35\!\cdots\!12}{48\!\cdots\!01}a^{7}-\frac{66\!\cdots\!33}{97\!\cdots\!02}a^{6}+\frac{56\!\cdots\!55}{32\!\cdots\!34}a^{5}+\frac{31\!\cdots\!31}{16\!\cdots\!66}a^{4}-\frac{14\!\cdots\!39}{10\!\cdots\!78}a^{3}-\frac{23\!\cdots\!25}{10\!\cdots\!78}a^{2}-\frac{16\!\cdots\!59}{27\!\cdots\!02}a-\frac{37\!\cdots\!15}{17\!\cdots\!06}$, $\frac{25\!\cdots\!57}{12\!\cdots\!97}a^{17}-\frac{26\!\cdots\!83}{25\!\cdots\!94}a^{16}+\frac{47\!\cdots\!92}{12\!\cdots\!97}a^{15}+\frac{50\!\cdots\!33}{43\!\cdots\!99}a^{14}-\frac{72\!\cdots\!77}{37\!\cdots\!42}a^{13}-\frac{40\!\cdots\!74}{12\!\cdots\!97}a^{12}+\frac{23\!\cdots\!27}{35\!\cdots\!86}a^{11}+\frac{17\!\cdots\!89}{12\!\cdots\!97}a^{10}+\frac{26\!\cdots\!87}{25\!\cdots\!94}a^{9}-\frac{34\!\cdots\!17}{25\!\cdots\!94}a^{8}-\frac{10\!\cdots\!39}{20\!\cdots\!19}a^{7}+\frac{42\!\cdots\!95}{86\!\cdots\!98}a^{6}+\frac{16\!\cdots\!29}{28\!\cdots\!66}a^{5}-\frac{47\!\cdots\!33}{14\!\cdots\!34}a^{4}-\frac{65\!\cdots\!29}{72\!\cdots\!14}a^{3}-\frac{34\!\cdots\!67}{32\!\cdots\!74}a^{2}+\frac{54\!\cdots\!59}{10\!\cdots\!58}a+\frac{23\!\cdots\!61}{35\!\cdots\!86}$, $\frac{16\!\cdots\!35}{34\!\cdots\!07}a^{17}-\frac{12\!\cdots\!01}{52\!\cdots\!78}a^{16}+\frac{28\!\cdots\!23}{34\!\cdots\!07}a^{15}+\frac{22\!\cdots\!15}{76\!\cdots\!46}a^{14}+\frac{53\!\cdots\!19}{86\!\cdots\!03}a^{13}-\frac{36\!\cdots\!98}{11\!\cdots\!69}a^{12}+\frac{18\!\cdots\!04}{11\!\cdots\!69}a^{11}+\frac{42\!\cdots\!58}{11\!\cdots\!69}a^{10}+\frac{18\!\cdots\!30}{38\!\cdots\!23}a^{9}-\frac{80\!\cdots\!41}{34\!\cdots\!07}a^{8}-\frac{37\!\cdots\!70}{48\!\cdots\!01}a^{7}-\frac{56\!\cdots\!02}{34\!\cdots\!07}a^{6}+\frac{10\!\cdots\!07}{11\!\cdots\!69}a^{5}-\frac{54\!\cdots\!93}{11\!\cdots\!62}a^{4}-\frac{67\!\cdots\!81}{54\!\cdots\!89}a^{3}+\frac{13\!\cdots\!15}{76\!\cdots\!46}a^{2}+\frac{63\!\cdots\!00}{97\!\cdots\!57}a-\frac{52\!\cdots\!31}{42\!\cdots\!47}$, $\frac{55\!\cdots\!80}{10\!\cdots\!21}a^{17}-\frac{13\!\cdots\!64}{79\!\cdots\!17}a^{16}+\frac{11\!\cdots\!25}{20\!\cdots\!42}a^{15}+\frac{61\!\cdots\!89}{12\!\cdots\!41}a^{14}+\frac{96\!\cdots\!58}{14\!\cdots\!03}a^{13}-\frac{69\!\cdots\!13}{10\!\cdots\!21}a^{12}+\frac{63\!\cdots\!91}{34\!\cdots\!07}a^{11}+\frac{15\!\cdots\!77}{20\!\cdots\!42}a^{10}+\frac{27\!\cdots\!19}{20\!\cdots\!42}a^{9}-\frac{15\!\cdots\!61}{10\!\cdots\!21}a^{8}-\frac{52\!\cdots\!29}{10\!\cdots\!78}a^{7}-\frac{15\!\cdots\!05}{68\!\cdots\!14}a^{6}+\frac{10\!\cdots\!35}{11\!\cdots\!69}a^{5}+\frac{18\!\cdots\!75}{11\!\cdots\!62}a^{4}-\frac{62\!\cdots\!52}{54\!\cdots\!89}a^{3}-\frac{75\!\cdots\!94}{38\!\cdots\!23}a^{2}+\frac{12\!\cdots\!91}{19\!\cdots\!14}a+\frac{94\!\cdots\!95}{84\!\cdots\!94}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 45444000566.5836 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 45444000566.5836 \cdot 1}{6\cdot\sqrt{127192258415404127890787986833408}}\cr\approx \mathstrut & 10.2497620214696 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 + 10*x^16 + 91*x^15 + 151*x^14 + 34*x^13 + 3415*x^12 + 14395*x^11 + 29125*x^10 - 21192*x^9 - 97073*x^8 - 90513*x^7 + 153009*x^6 + 344700*x^5 - 49059*x^4 - 421497*x^3 - 92718*x^2 + 222021*x + 111051)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 3*x^17 + 10*x^16 + 91*x^15 + 151*x^14 + 34*x^13 + 3415*x^12 + 14395*x^11 + 29125*x^10 - 21192*x^9 - 97073*x^8 - 90513*x^7 + 153009*x^6 + 344700*x^5 - 49059*x^4 - 421497*x^3 - 92718*x^2 + 222021*x + 111051, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 3*x^17 + 10*x^16 + 91*x^15 + 151*x^14 + 34*x^13 + 3415*x^12 + 14395*x^11 + 29125*x^10 - 21192*x^9 - 97073*x^8 - 90513*x^7 + 153009*x^6 + 344700*x^5 - 49059*x^4 - 421497*x^3 - 92718*x^2 + 222021*x + 111051);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 3*x^17 + 10*x^16 + 91*x^15 + 151*x^14 + 34*x^13 + 3415*x^12 + 14395*x^11 + 29125*x^10 - 21192*x^9 - 97073*x^8 - 90513*x^7 + 153009*x^6 + 344700*x^5 - 49059*x^4 - 421497*x^3 - 92718*x^2 + 222021*x + 111051);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3\times S_3^2$ (as 18T46):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 108
The 27 conjugacy class representatives for $C_3\times S_3^2$
Character table for $C_3\times S_3^2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.1812.1, 6.0.9850032.2, 6.0.9850032.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 12.0.12912877685616059713388544.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{3}$ ${\href{/padicField/7.3.0.1}{3} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{3}$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.2.0.1}{2} }^{9}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ ${\href{/padicField/37.3.0.1}{3} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{3}$ ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{3}$ ${\href{/padicField/53.6.0.1}{6} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.4.2$x^{6} - 2 x^{3} + 4$$3$$2$$4$$S_3\times C_3$$[\ ]_{3}^{6}$
2.12.16.3$x^{12} + 4 x^{11} + 8 x^{10} + 10 x^{9} + 8 x^{8} + 4 x^{7} + 2 x^{6} - 4 x^{5} - 4 x^{4} + 4 x^{3} + 4$$6$$2$$16$$C_6\times S_3$$[2]_{3}^{6}$
\(3\) Copy content Toggle raw display 3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
\(151\) Copy content Toggle raw display 151.3.2.2$x^{3} + 302$$3$$1$$2$$C_3$$[\ ]_{3}$
151.3.0.1$x^{3} + x + 145$$1$$3$$0$$C_3$$[\ ]^{3}$
151.6.3.1$x^{6} + 22801 x^{2} - 499227895$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
151.6.5.3$x^{6} + 906$$6$$1$$5$$C_6$$[\ ]_{6}$