Properties

Label 18.0.11126075312...9771.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{4}\cdot 11^{5}\cdot 31^{8}$
Root discriminant $11.43$
Ramified primes $3, 11, 31$
Class number $1$
Class group Trivial
Galois Group 18T485

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 7, 3, -14, 15, -6, -16, 44, -37, -19, 69, -55, -8, 55, -54, 28, -8, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 8*x^17 + 28*x^16 - 54*x^15 + 55*x^14 - 8*x^13 - 55*x^12 + 69*x^11 - 19*x^10 - 37*x^9 + 44*x^8 - 16*x^7 - 6*x^6 + 15*x^5 - 14*x^4 + 3*x^3 + 7*x^2 - 5*x + 1)
gp: K = bnfinit(x^18 - 8*x^17 + 28*x^16 - 54*x^15 + 55*x^14 - 8*x^13 - 55*x^12 + 69*x^11 - 19*x^10 - 37*x^9 + 44*x^8 - 16*x^7 - 6*x^6 + 15*x^5 - 14*x^4 + 3*x^3 + 7*x^2 - 5*x + 1, 1)

Normalized defining polynomial

\(x^{18} \) \(\mathstrut -\mathstrut 8 x^{17} \) \(\mathstrut +\mathstrut 28 x^{16} \) \(\mathstrut -\mathstrut 54 x^{15} \) \(\mathstrut +\mathstrut 55 x^{14} \) \(\mathstrut -\mathstrut 8 x^{13} \) \(\mathstrut -\mathstrut 55 x^{12} \) \(\mathstrut +\mathstrut 69 x^{11} \) \(\mathstrut -\mathstrut 19 x^{10} \) \(\mathstrut -\mathstrut 37 x^{9} \) \(\mathstrut +\mathstrut 44 x^{8} \) \(\mathstrut -\mathstrut 16 x^{7} \) \(\mathstrut -\mathstrut 6 x^{6} \) \(\mathstrut +\mathstrut 15 x^{5} \) \(\mathstrut -\mathstrut 14 x^{4} \) \(\mathstrut +\mathstrut 3 x^{3} \) \(\mathstrut +\mathstrut 7 x^{2} \) \(\mathstrut -\mathstrut 5 x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $18$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 9]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-11126075312143749771=-\,3^{4}\cdot 11^{5}\cdot 31^{8}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $11.43$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $3, 11, 31$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{615673} a^{17} - \frac{31358}{615673} a^{16} - \frac{156453}{615673} a^{15} - \frac{265295}{615673} a^{14} - \frac{128252}{615673} a^{13} - \frac{260171}{615673} a^{12} - \frac{75109}{615673} a^{11} - \frac{282006}{615673} a^{10} - \frac{176199}{615673} a^{9} + \frac{20457}{615673} a^{8} + \frac{204360}{615673} a^{7} + \frac{7222}{615673} a^{6} + \frac{157958}{615673} a^{5} - \frac{125346}{615673} a^{4} - \frac{243673}{615673} a^{3} - \frac{122031}{615673} a^{2} - \frac{120165}{615673} a - \frac{130342}{615673}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $8$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 80.526625464 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

18T485:

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 5184
The 58 conjugacy class representatives for t18n485 are not computed
Character table for t18n485 is not computed

Intermediate fields

3.1.31.1, 6.0.10571.1, 9.1.1005714369.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ $18$ R ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ $18$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ $18$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.6.0.1$x^{6} - x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.6.5.1$x^{6} - 11$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
11.12.0.1$x^{12} - x + 7$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$31$$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.8.6.1$x^{8} - 7471 x^{4} + 19927296$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$