Normalized defining polynomial
\( x^{17} - 2 x^{16} + 8 x^{13} + 16 x^{12} - 16 x^{11} + 64 x^{9} - 32 x^{8} - 80 x^{7} + 32 x^{6} + 40 x^{5} + 80 x^{4} + 16 x^{3} - 128 x^{2} - 2 x + 68 \)
Invariants
Degree: | $17$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(604462909807314587353088\)\(\medspace = 2^{79}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $25.06$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23126202879577982} a^{16} + \frac{76599019108737}{11563101439788991} a^{15} - \frac{3116476919071769}{11563101439788991} a^{14} - \frac{3753338286501982}{11563101439788991} a^{13} + \frac{5417161799952214}{11563101439788991} a^{12} + \frac{4523768210181351}{11563101439788991} a^{11} + \frac{4452913895983193}{11563101439788991} a^{10} + \frac{5135972366535216}{11563101439788991} a^{9} - \frac{2929695283632081}{11563101439788991} a^{8} - \frac{5470694594022087}{11563101439788991} a^{7} + \frac{1761284834443544}{11563101439788991} a^{6} - \frac{1096278120040765}{11563101439788991} a^{5} + \frac{3361849781604128}{11563101439788991} a^{4} - \frac{4039680983478318}{11563101439788991} a^{3} + \frac{5747676031516213}{11563101439788991} a^{2} - \frac{2695941730666951}{11563101439788991} a + \frac{2408137881238597}{11563101439788991}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 600164.932841 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 272 |
The 17 conjugacy class representatives for $F_{17}$ |
Character table for $F_{17}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $17$ | $16{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed |
Artin representations
Additional information
This field is remarkable in that it is only ramified at 2, and
- it has the lowest degree of such a field where the degree is not a power of 2
- its Galois closure has the smallest degree for a Galois field where the degree is not a power of 2.
See Theorem 2.25 of [MR:1299733].