# SageMath code for working with number field 16.8.57681033264163530732453953.2 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^16 - x^15 + x^14 + 16*x^13 - 118*x^12 + 152*x^11 - 254*x^10 - 1055*x^9 + 4234*x^8 - 9028*x^7 + 11255*x^6 + 8856*x^5 - 53600*x^4 + 108034*x^3 - 108306*x^2 + 39813*x - 4079) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]