Properties

Label 16.0.8067379209183488.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{8}\cdot 17^{3}\cdot 283^{4}$
Root discriminant $9.87$
Ramified primes $2, 17, 283$
Class number $1$
Class group Trivial
Galois Group 16T1851

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 32, -76, 120, -129, 92, -42, 23, -33, 36, -18, 1, 1, 3, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 3*x^14 + x^13 + x^12 - 18*x^11 + 36*x^10 - 33*x^9 + 23*x^8 - 42*x^7 + 92*x^6 - 129*x^5 + 120*x^4 - 76*x^3 + 32*x^2 - 8*x + 1)
gp: K = bnfinit(x^16 - 3*x^15 + 3*x^14 + x^13 + x^12 - 18*x^11 + 36*x^10 - 33*x^9 + 23*x^8 - 42*x^7 + 92*x^6 - 129*x^5 + 120*x^4 - 76*x^3 + 32*x^2 - 8*x + 1, 1)

Normalized defining polynomial

\(x^{16} \) \(\mathstrut -\mathstrut 3 x^{15} \) \(\mathstrut +\mathstrut 3 x^{14} \) \(\mathstrut +\mathstrut x^{13} \) \(\mathstrut +\mathstrut x^{12} \) \(\mathstrut -\mathstrut 18 x^{11} \) \(\mathstrut +\mathstrut 36 x^{10} \) \(\mathstrut -\mathstrut 33 x^{9} \) \(\mathstrut +\mathstrut 23 x^{8} \) \(\mathstrut -\mathstrut 42 x^{7} \) \(\mathstrut +\mathstrut 92 x^{6} \) \(\mathstrut -\mathstrut 129 x^{5} \) \(\mathstrut +\mathstrut 120 x^{4} \) \(\mathstrut -\mathstrut 76 x^{3} \) \(\mathstrut +\mathstrut 32 x^{2} \) \(\mathstrut -\mathstrut 8 x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $16$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 8]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(8067379209183488=2^{8}\cdot 17^{3}\cdot 283^{4}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $9.87$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $2, 17, 283$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7951} a^{15} - \frac{297}{7951} a^{14} - \frac{140}{7951} a^{13} + \frac{1406}{7951} a^{12} + \frac{89}{7951} a^{11} - \frac{2331}{7951} a^{10} + \frac{1564}{7951} a^{9} + \frac{1309}{7951} a^{8} - \frac{3175}{7951} a^{7} + \frac{3141}{7951} a^{6} - \frac{1046}{7951} a^{5} - \frac{2694}{7951} a^{4} - \frac{2944}{7951} a^{3} - \frac{1199}{7951} a^{2} + \frac{2694}{7951} a + \frac{3056}{7951}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $7$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 13.0020519042 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

16T1851:

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 49152
The 116 conjugacy class representatives for t16n1851 are not computed
Character table for t16n1851 is not computed

Intermediate fields

4.2.283.1, 8.0.1361513.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16$ $16$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ $16$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.6$x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$$2$$4$$8$$(C_8:C_2):C_2$$[2, 2, 2]^{4}$
2.8.0.1$x^{8} + x^{4} + x^{3} + x + 1$$1$$8$$0$$C_8$$[\ ]^{8}$
$17$17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.3.2$x^{4} - 153$$4$$1$$3$$C_4$$[\ ]_{4}$
283Data not computed