Properties

Label 16.0.666...433.3
Degree $16$
Signature $[0, 8]$
Discriminant $6.669\times 10^{31}$
Root discriminant \(97.50\)
Ramified primes $13,17$
Class number $3104$ (GRH)
Class group [2, 2, 2, 388] (GRH)
Galois group $C_{16} : C_2$ (as 16T22)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 26*x^14 - 129*x^13 + 302*x^12 - 1025*x^11 + 4282*x^10 + 16326*x^9 + 95981*x^8 + 338337*x^7 + 1003331*x^6 + 2604733*x^5 + 6573615*x^4 + 13657839*x^3 + 25464387*x^2 + 29036657*x + 45417983)
 
gp: K = bnfinit(y^16 - 3*y^15 + 26*y^14 - 129*y^13 + 302*y^12 - 1025*y^11 + 4282*y^10 + 16326*y^9 + 95981*y^8 + 338337*y^7 + 1003331*y^6 + 2604733*y^5 + 6573615*y^4 + 13657839*y^3 + 25464387*y^2 + 29036657*y + 45417983, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 3*x^15 + 26*x^14 - 129*x^13 + 302*x^12 - 1025*x^11 + 4282*x^10 + 16326*x^9 + 95981*x^8 + 338337*x^7 + 1003331*x^6 + 2604733*x^5 + 6573615*x^4 + 13657839*x^3 + 25464387*x^2 + 29036657*x + 45417983);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 3*x^15 + 26*x^14 - 129*x^13 + 302*x^12 - 1025*x^11 + 4282*x^10 + 16326*x^9 + 95981*x^8 + 338337*x^7 + 1003331*x^6 + 2604733*x^5 + 6573615*x^4 + 13657839*x^3 + 25464387*x^2 + 29036657*x + 45417983)
 

\( x^{16} - 3 x^{15} + 26 x^{14} - 129 x^{13} + 302 x^{12} - 1025 x^{11} + 4282 x^{10} + 16326 x^{9} + \cdots + 45417983 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(66688975910627504451630153142433\) \(\medspace = 13^{12}\cdot 17^{15}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(97.50\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{3/4}17^{15/16}\approx 97.49972213953866$
Ramified primes:   \(13\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{17}) \)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13}a^{12}+\frac{6}{13}a^{11}-\frac{4}{13}a^{10}+\frac{3}{13}a^{9}+\frac{3}{13}a^{8}-\frac{5}{13}a^{7}-\frac{1}{13}a^{6}+\frac{4}{13}a^{5}-\frac{4}{13}a^{4}$, $\frac{1}{13}a^{13}-\frac{1}{13}a^{11}+\frac{1}{13}a^{10}-\frac{2}{13}a^{9}+\frac{3}{13}a^{8}+\frac{3}{13}a^{7}-\frac{3}{13}a^{6}-\frac{2}{13}a^{5}-\frac{2}{13}a^{4}$, $\frac{1}{13}a^{14}-\frac{6}{13}a^{11}-\frac{6}{13}a^{10}+\frac{6}{13}a^{9}+\frac{6}{13}a^{8}+\frac{5}{13}a^{7}-\frac{3}{13}a^{6}+\frac{2}{13}a^{5}-\frac{4}{13}a^{4}$, $\frac{1}{63\!\cdots\!13}a^{15}-\frac{56\!\cdots\!43}{63\!\cdots\!13}a^{14}+\frac{17\!\cdots\!39}{63\!\cdots\!13}a^{13}-\frac{49\!\cdots\!21}{63\!\cdots\!13}a^{12}+\frac{24\!\cdots\!39}{63\!\cdots\!13}a^{11}-\frac{15\!\cdots\!42}{63\!\cdots\!13}a^{10}+\frac{30\!\cdots\!40}{63\!\cdots\!13}a^{9}+\frac{41\!\cdots\!30}{63\!\cdots\!13}a^{8}+\frac{10\!\cdots\!62}{63\!\cdots\!13}a^{7}-\frac{25\!\cdots\!48}{63\!\cdots\!13}a^{6}-\frac{37\!\cdots\!22}{42\!\cdots\!37}a^{5}-\frac{42\!\cdots\!57}{49\!\cdots\!01}a^{4}+\frac{15\!\cdots\!42}{49\!\cdots\!01}a^{3}+\frac{12\!\cdots\!19}{49\!\cdots\!01}a^{2}+\frac{18\!\cdots\!81}{49\!\cdots\!01}a+\frac{87\!\cdots\!67}{48\!\cdots\!01}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{388}$, which has order $3104$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{92\!\cdots\!48}{10\!\cdots\!83}a^{15}-\frac{17\!\cdots\!69}{10\!\cdots\!83}a^{14}+\frac{17\!\cdots\!97}{10\!\cdots\!83}a^{13}+\frac{10\!\cdots\!03}{10\!\cdots\!83}a^{12}-\frac{29\!\cdots\!80}{10\!\cdots\!83}a^{11}+\frac{20\!\cdots\!09}{10\!\cdots\!83}a^{10}-\frac{11\!\cdots\!24}{10\!\cdots\!83}a^{9}+\frac{52\!\cdots\!89}{10\!\cdots\!83}a^{8}+\frac{15\!\cdots\!08}{10\!\cdots\!83}a^{7}+\frac{54\!\cdots\!64}{77\!\cdots\!91}a^{6}+\frac{25\!\cdots\!62}{10\!\cdots\!83}a^{5}+\frac{58\!\cdots\!82}{77\!\cdots\!91}a^{4}+\frac{19\!\cdots\!19}{77\!\cdots\!91}a^{3}+\frac{31\!\cdots\!96}{77\!\cdots\!91}a^{2}+\frac{47\!\cdots\!13}{77\!\cdots\!91}a+\frac{92\!\cdots\!60}{76\!\cdots\!91}$, $\frac{27\!\cdots\!69}{10\!\cdots\!83}a^{15}-\frac{43\!\cdots\!08}{10\!\cdots\!83}a^{14}+\frac{42\!\cdots\!01}{10\!\cdots\!83}a^{13}-\frac{23\!\cdots\!33}{10\!\cdots\!83}a^{12}+\frac{13\!\cdots\!68}{10\!\cdots\!83}a^{11}-\frac{56\!\cdots\!31}{10\!\cdots\!83}a^{10}+\frac{18\!\cdots\!43}{10\!\cdots\!83}a^{9}-\frac{56\!\cdots\!37}{10\!\cdots\!83}a^{8}+\frac{11\!\cdots\!16}{10\!\cdots\!83}a^{7}+\frac{45\!\cdots\!56}{77\!\cdots\!91}a^{6}+\frac{11\!\cdots\!45}{10\!\cdots\!83}a^{5}+\frac{44\!\cdots\!77}{77\!\cdots\!91}a^{4}+\frac{77\!\cdots\!36}{77\!\cdots\!91}a^{3}+\frac{24\!\cdots\!63}{77\!\cdots\!91}a^{2}+\frac{19\!\cdots\!60}{77\!\cdots\!91}a+\frac{77\!\cdots\!47}{76\!\cdots\!91}$, $\frac{11\!\cdots\!17}{10\!\cdots\!83}a^{15}-\frac{60\!\cdots\!77}{10\!\cdots\!83}a^{14}+\frac{60\!\cdots\!98}{10\!\cdots\!83}a^{13}-\frac{22\!\cdots\!30}{10\!\cdots\!83}a^{12}+\frac{10\!\cdots\!88}{10\!\cdots\!83}a^{11}-\frac{36\!\cdots\!22}{10\!\cdots\!83}a^{10}+\frac{71\!\cdots\!19}{10\!\cdots\!83}a^{9}-\frac{39\!\cdots\!48}{10\!\cdots\!83}a^{8}+\frac{12\!\cdots\!24}{10\!\cdots\!83}a^{7}+\frac{59\!\cdots\!20}{77\!\cdots\!91}a^{6}+\frac{37\!\cdots\!07}{10\!\cdots\!83}a^{5}+\frac{10\!\cdots\!59}{77\!\cdots\!91}a^{4}+\frac{27\!\cdots\!55}{77\!\cdots\!91}a^{3}+\frac{56\!\cdots\!59}{77\!\cdots\!91}a^{2}+\frac{67\!\cdots\!73}{77\!\cdots\!91}a+\frac{17\!\cdots\!25}{76\!\cdots\!91}$, $\frac{74\!\cdots\!70}{42\!\cdots\!37}a^{15}-\frac{25\!\cdots\!15}{42\!\cdots\!37}a^{14}+\frac{17\!\cdots\!96}{42\!\cdots\!37}a^{13}-\frac{96\!\cdots\!07}{42\!\cdots\!37}a^{12}+\frac{21\!\cdots\!49}{42\!\cdots\!37}a^{11}-\frac{58\!\cdots\!55}{42\!\cdots\!37}a^{10}+\frac{30\!\cdots\!15}{42\!\cdots\!37}a^{9}+\frac{11\!\cdots\!13}{42\!\cdots\!37}a^{8}+\frac{44\!\cdots\!32}{32\!\cdots\!49}a^{7}+\frac{16\!\cdots\!62}{42\!\cdots\!37}a^{6}+\frac{41\!\cdots\!86}{42\!\cdots\!37}a^{5}+\frac{91\!\cdots\!09}{42\!\cdots\!37}a^{4}+\frac{17\!\cdots\!77}{32\!\cdots\!49}a^{3}+\frac{32\!\cdots\!38}{32\!\cdots\!49}a^{2}+\frac{35\!\cdots\!26}{32\!\cdots\!49}a-\frac{24\!\cdots\!36}{32\!\cdots\!49}$, $\frac{93\!\cdots\!84}{42\!\cdots\!37}a^{15}+\frac{35\!\cdots\!72}{42\!\cdots\!37}a^{14}+\frac{29\!\cdots\!65}{42\!\cdots\!37}a^{13}-\frac{77\!\cdots\!19}{42\!\cdots\!37}a^{12}-\frac{44\!\cdots\!71}{42\!\cdots\!37}a^{11}+\frac{18\!\cdots\!17}{42\!\cdots\!37}a^{10}-\frac{36\!\cdots\!38}{42\!\cdots\!37}a^{9}+\frac{32\!\cdots\!26}{32\!\cdots\!49}a^{8}+\frac{86\!\cdots\!78}{42\!\cdots\!37}a^{7}+\frac{38\!\cdots\!65}{42\!\cdots\!37}a^{6}+\frac{83\!\cdots\!14}{42\!\cdots\!37}a^{5}+\frac{17\!\cdots\!81}{42\!\cdots\!37}a^{4}+\frac{44\!\cdots\!61}{32\!\cdots\!49}a^{3}+\frac{52\!\cdots\!85}{32\!\cdots\!49}a^{2}+\frac{11\!\cdots\!81}{32\!\cdots\!49}a-\frac{98\!\cdots\!66}{32\!\cdots\!49}$, $\frac{11\!\cdots\!10}{42\!\cdots\!37}a^{15}+\frac{13\!\cdots\!42}{42\!\cdots\!37}a^{14}-\frac{36\!\cdots\!42}{42\!\cdots\!37}a^{13}+\frac{23\!\cdots\!78}{42\!\cdots\!37}a^{12}-\frac{55\!\cdots\!23}{42\!\cdots\!37}a^{11}+\frac{17\!\cdots\!45}{42\!\cdots\!37}a^{10}-\frac{52\!\cdots\!94}{42\!\cdots\!37}a^{9}+\frac{35\!\cdots\!22}{42\!\cdots\!37}a^{8}+\frac{15\!\cdots\!03}{42\!\cdots\!37}a^{7}+\frac{44\!\cdots\!23}{42\!\cdots\!37}a^{6}+\frac{11\!\cdots\!57}{42\!\cdots\!37}a^{5}+\frac{32\!\cdots\!48}{42\!\cdots\!37}a^{4}+\frac{58\!\cdots\!96}{32\!\cdots\!49}a^{3}+\frac{10\!\cdots\!31}{32\!\cdots\!49}a^{2}+\frac{15\!\cdots\!38}{32\!\cdots\!49}a+\frac{20\!\cdots\!28}{32\!\cdots\!49}$, $\frac{23\!\cdots\!43}{42\!\cdots\!37}a^{15}-\frac{10\!\cdots\!03}{42\!\cdots\!37}a^{14}+\frac{65\!\cdots\!41}{42\!\cdots\!37}a^{13}-\frac{32\!\cdots\!58}{42\!\cdots\!37}a^{12}+\frac{86\!\cdots\!32}{42\!\cdots\!37}a^{11}-\frac{17\!\cdots\!47}{32\!\cdots\!49}a^{10}+\frac{79\!\cdots\!00}{42\!\cdots\!37}a^{9}+\frac{36\!\cdots\!32}{42\!\cdots\!37}a^{8}+\frac{16\!\cdots\!16}{42\!\cdots\!37}a^{7}+\frac{54\!\cdots\!35}{42\!\cdots\!37}a^{6}+\frac{12\!\cdots\!15}{42\!\cdots\!37}a^{5}+\frac{26\!\cdots\!71}{42\!\cdots\!37}a^{4}+\frac{57\!\cdots\!21}{32\!\cdots\!49}a^{3}+\frac{10\!\cdots\!52}{32\!\cdots\!49}a^{2}+\frac{11\!\cdots\!30}{32\!\cdots\!49}a-\frac{18\!\cdots\!67}{32\!\cdots\!49}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 464752.47625 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 464752.47625 \cdot 3104}{2\cdot\sqrt{66688975910627504451630153142433}}\cr\approx \mathstrut & 0.21454843552 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 26*x^14 - 129*x^13 + 302*x^12 - 1025*x^11 + 4282*x^10 + 16326*x^9 + 95981*x^8 + 338337*x^7 + 1003331*x^6 + 2604733*x^5 + 6573615*x^4 + 13657839*x^3 + 25464387*x^2 + 29036657*x + 45417983)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 3*x^15 + 26*x^14 - 129*x^13 + 302*x^12 - 1025*x^11 + 4282*x^10 + 16326*x^9 + 95981*x^8 + 338337*x^7 + 1003331*x^6 + 2604733*x^5 + 6573615*x^4 + 13657839*x^3 + 25464387*x^2 + 29036657*x + 45417983, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 3*x^15 + 26*x^14 - 129*x^13 + 302*x^12 - 1025*x^11 + 4282*x^10 + 16326*x^9 + 95981*x^8 + 338337*x^7 + 1003331*x^6 + 2604733*x^5 + 6573615*x^4 + 13657839*x^3 + 25464387*x^2 + 29036657*x + 45417983);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 3*x^15 + 26*x^14 - 129*x^13 + 302*x^12 - 1025*x^11 + 4282*x^10 + 16326*x^9 + 95981*x^8 + 338337*x^7 + 1003331*x^6 + 2604733*x^5 + 6573615*x^4 + 13657839*x^3 + 25464387*x^2 + 29036657*x + 45417983);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\OD_{32}$ (as 16T22):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_{16} : C_2$
Character table for $C_{16} : C_2$

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.11719682839553.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }^{2}$ $16$ $16$ $16$ $16$ R R ${\href{/padicField/19.8.0.1}{8} }^{2}$ $16$ $16$ $16$ $16$ $16$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ ${\href{/padicField/53.8.0.1}{8} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.4.3.3$x^{4} + 26$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.4$x^{4} + 91$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.3$x^{4} + 26$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.4$x^{4} + 91$$4$$1$$3$$C_4$$[\ ]_{4}$
\(17\) Copy content Toggle raw display 17.16.15.1$x^{16} + 272$$16$$1$$15$$C_{16}$$[\ ]_{16}$