Properties

Label 16.0.63384657313...2576.3
Degree $16$
Signature $[0, 8]$
Discriminant $2^{40}\cdot 7^{8}$
Root discriminant $14.97$
Ramified primes $2, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2\wr C_2$ (as 16T39)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^14 + 27*x^12 - 74*x^10 + 108*x^8 - 74*x^6 + 27*x^4 - 6*x^2 + 1)
 
gp: K = bnfinit(x^16 - 6*x^14 + 27*x^12 - 74*x^10 + 108*x^8 - 74*x^6 + 27*x^4 - 6*x^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -6, 0, 27, 0, -74, 0, 108, 0, -74, 0, 27, 0, -6, 0, 1]);
 

Normalized defining polynomial

\( x^{16} - 6 x^{14} + 27 x^{12} - 74 x^{10} + 108 x^{8} - 74 x^{6} + 27 x^{4} - 6 x^{2} + 1 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(6338465731314712576=2^{40}\cdot 7^{8}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $14.97$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $2, 7$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $8$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a$, $\frac{1}{36} a^{12} + \frac{1}{9} a^{10} - \frac{1}{3} a^{8} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{2}{9} a^{2} - \frac{5}{36}$, $\frac{1}{36} a^{13} + \frac{1}{9} a^{11} - \frac{1}{3} a^{9} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{2}{9} a^{3} - \frac{5}{36} a$, $\frac{1}{108} a^{14} - \frac{1}{108} a^{12} + \frac{1}{27} a^{10} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} + \frac{4}{27} a^{4} - \frac{1}{108} a^{2} + \frac{25}{108}$, $\frac{1}{108} a^{15} - \frac{1}{108} a^{13} + \frac{1}{27} a^{11} - \frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{4}{27} a^{5} - \frac{1}{108} a^{3} + \frac{25}{108} a$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -1 \) (order $2$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 747.271213234 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Galois group

$C_2^2\wr C_2$ (as 16T39):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_2^2\wr C_2$
Character table for $C_2^2\wr C_2$

Intermediate fields

\(\Q(\sqrt{-14}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-7}) \), 4.2.50176.1, 4.2.1024.1, 4.0.7168.1, 4.4.7168.1, 4.0.392.1 x2, \(\Q(\sqrt{2}, \sqrt{-7})\), 4.2.448.1 x2, 8.0.9834496.2, 8.0.2517630976.6, 8.0.2517630976.5, 8.0.2517630976.1, 8.4.51380224.1, 8.4.2517630976.1, 8.0.51380224.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: Deg 32
Degree 8 siblings: 8.4.51380224.1, 8.0.51380224.1, 8.4.205520896.1, 8.4.10070523904.2, 8.0.205520896.2, 8.0.10070523904.8, 8.4.2517630976.1, 8.0.2517630976.1
Degree 16 siblings: 16.0.42238838692642816.1, 16.0.101415451701035401216.4, 16.0.101415451701035401216.12, 16.8.101415451701035401216.1, 16.0.101415451701035401216.10, 16.0.6338465731314712576.7

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.20.1$x^{8} + 4 x^{7} + 14 x^{4} + 4$$4$$2$$20$$D_4\times C_2$$[2, 3, 7/2]^{2}$
2.8.20.1$x^{8} + 4 x^{7} + 14 x^{4} + 4$$4$$2$$20$$D_4\times C_2$$[2, 3, 7/2]^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$