Properties

Label 16.0.604...088.1
Degree $16$
Signature $[0, 8]$
Discriminant $6.045\times 10^{23}$
Root discriminant \(30.64\)
Ramified prime $2$
Class number $17$ (GRH)
Class group [17] (GRH)
Galois group $C_{16}$ (as 16T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 16*x^14 + 104*x^12 + 352*x^10 + 660*x^8 + 672*x^6 + 336*x^4 + 64*x^2 + 2)
 
gp: K = bnfinit(y^16 + 16*y^14 + 104*y^12 + 352*y^10 + 660*y^8 + 672*y^6 + 336*y^4 + 64*y^2 + 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 16*x^14 + 104*x^12 + 352*x^10 + 660*x^8 + 672*x^6 + 336*x^4 + 64*x^2 + 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 16*x^14 + 104*x^12 + 352*x^10 + 660*x^8 + 672*x^6 + 336*x^4 + 64*x^2 + 2)
 

\( x^{16} + 16x^{14} + 104x^{12} + 352x^{10} + 660x^{8} + 672x^{6} + 336x^{4} + 64x^{2} + 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(604462909807314587353088\) \(\medspace = 2^{79}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.64\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{79/16}\approx 30.64330498235436$
Ramified primes:   \(2\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{2}) \)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(64=2^{6}\)
Dirichlet character group:    $\lbrace$$\chi_{64}(1,·)$, $\chi_{64}(3,·)$, $\chi_{64}(9,·)$, $\chi_{64}(11,·)$, $\chi_{64}(17,·)$, $\chi_{64}(19,·)$, $\chi_{64}(25,·)$, $\chi_{64}(27,·)$, $\chi_{64}(33,·)$, $\chi_{64}(35,·)$, $\chi_{64}(41,·)$, $\chi_{64}(43,·)$, $\chi_{64}(49,·)$, $\chi_{64}(51,·)$, $\chi_{64}(57,·)$, $\chi_{64}(59,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{17}$, which has order $17$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{8}+8a^{6}+20a^{4}+16a^{2}+1$, $a^{4}+4a^{2}+1$, $a^{8}+8a^{6}+21a^{4}+20a^{2}+5$, $a^{6}+6a^{4}+9a^{2}+1$, $a^{14}+14a^{12}+77a^{10}+210a^{8}+294a^{6}+196a^{4}+49a^{2}+3$, $a^{6}+7a^{4}+14a^{2}+7$, $a^{2}+1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 15753.9498624 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 15753.9498624 \cdot 17}{2\cdot\sqrt{604462909807314587353088}}\cr\approx \mathstrut & 0.418371895598 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 16*x^14 + 104*x^12 + 352*x^10 + 660*x^8 + 672*x^6 + 336*x^4 + 64*x^2 + 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 16*x^14 + 104*x^12 + 352*x^10 + 660*x^8 + 672*x^6 + 336*x^4 + 64*x^2 + 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 16*x^14 + 104*x^12 + 352*x^10 + 660*x^8 + 672*x^6 + 336*x^4 + 64*x^2 + 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 16*x^14 + 104*x^12 + 352*x^10 + 660*x^8 + 672*x^6 + 336*x^4 + 64*x^2 + 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{16}$ (as 16T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 16
The 16 conjugacy class representatives for $C_{16}$
Character table for $C_{16}$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $16$ $16$ ${\href{/padicField/7.8.0.1}{8} }^{2}$ $16$ $16$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ $16$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ $16$ ${\href{/padicField/31.1.0.1}{1} }^{16}$ $16$ ${\href{/padicField/41.8.0.1}{8} }^{2}$ $16$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ $16$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.16.79.2$x^{16} + 16 x^{14} + 56 x^{12} + 48 x^{10} + 4 x^{8} + 32 x^{5} + 32 x^{4} + 32 x^{2} + 2$$16$$1$$79$$C_{16}$$[3, 4, 5, 6]$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.64.16t1.a.a$1$ $ 2^{6}$ 16.0.604462909807314587353088.1 $C_{16}$ (as 16T1) $0$ $-1$
* 1.32.8t1.a.a$1$ $ 2^{5}$ \(\Q(\zeta_{32})^+\) $C_8$ (as 8T1) $0$ $1$
* 1.64.16t1.a.b$1$ $ 2^{6}$ 16.0.604462909807314587353088.1 $C_{16}$ (as 16T1) $0$ $-1$
* 1.16.4t1.a.a$1$ $ 2^{4}$ \(\Q(\zeta_{16})^+\) $C_4$ (as 4T1) $0$ $1$
* 1.64.16t1.a.c$1$ $ 2^{6}$ 16.0.604462909807314587353088.1 $C_{16}$ (as 16T1) $0$ $-1$
* 1.32.8t1.a.b$1$ $ 2^{5}$ \(\Q(\zeta_{32})^+\) $C_8$ (as 8T1) $0$ $1$
* 1.64.16t1.a.d$1$ $ 2^{6}$ 16.0.604462909807314587353088.1 $C_{16}$ (as 16T1) $0$ $-1$
* 1.8.2t1.a.a$1$ $ 2^{3}$ \(\Q(\sqrt{2}) \) $C_2$ (as 2T1) $1$ $1$
* 1.64.16t1.a.e$1$ $ 2^{6}$ 16.0.604462909807314587353088.1 $C_{16}$ (as 16T1) $0$ $-1$
* 1.32.8t1.a.c$1$ $ 2^{5}$ \(\Q(\zeta_{32})^+\) $C_8$ (as 8T1) $0$ $1$
* 1.64.16t1.a.f$1$ $ 2^{6}$ 16.0.604462909807314587353088.1 $C_{16}$ (as 16T1) $0$ $-1$
* 1.16.4t1.a.b$1$ $ 2^{4}$ \(\Q(\zeta_{16})^+\) $C_4$ (as 4T1) $0$ $1$
* 1.64.16t1.a.g$1$ $ 2^{6}$ 16.0.604462909807314587353088.1 $C_{16}$ (as 16T1) $0$ $-1$
* 1.32.8t1.a.d$1$ $ 2^{5}$ \(\Q(\zeta_{32})^+\) $C_8$ (as 8T1) $0$ $1$
* 1.64.16t1.a.h$1$ $ 2^{6}$ 16.0.604462909807314587353088.1 $C_{16}$ (as 16T1) $0$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.