Properties

Label 16.0.5821863490955437.1
Degree $16$
Signature $[0, 8]$
Discriminant $19^{2}\cdot 101^{2}\cdot 277\cdot 2389^{2}$
Root discriminant $9.67$
Ramified primes $19, 101, 277, 2389$
Class number $1$
Class group Trivial
Galois Group 16T1948

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 15, -20, 15, -7, 6, -14, 25, -30, 30, -27, 23, -17, 10, -4, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 10*x^14 - 17*x^13 + 23*x^12 - 27*x^11 + 30*x^10 - 30*x^9 + 25*x^8 - 14*x^7 + 6*x^6 - 7*x^5 + 15*x^4 - 20*x^3 + 15*x^2 - 6*x + 1)
gp: K = bnfinit(x^16 - 4*x^15 + 10*x^14 - 17*x^13 + 23*x^12 - 27*x^11 + 30*x^10 - 30*x^9 + 25*x^8 - 14*x^7 + 6*x^6 - 7*x^5 + 15*x^4 - 20*x^3 + 15*x^2 - 6*x + 1, 1)

Normalized defining polynomial

\(x^{16} \) \(\mathstrut -\mathstrut 4 x^{15} \) \(\mathstrut +\mathstrut 10 x^{14} \) \(\mathstrut -\mathstrut 17 x^{13} \) \(\mathstrut +\mathstrut 23 x^{12} \) \(\mathstrut -\mathstrut 27 x^{11} \) \(\mathstrut +\mathstrut 30 x^{10} \) \(\mathstrut -\mathstrut 30 x^{9} \) \(\mathstrut +\mathstrut 25 x^{8} \) \(\mathstrut -\mathstrut 14 x^{7} \) \(\mathstrut +\mathstrut 6 x^{6} \) \(\mathstrut -\mathstrut 7 x^{5} \) \(\mathstrut +\mathstrut 15 x^{4} \) \(\mathstrut -\mathstrut 20 x^{3} \) \(\mathstrut +\mathstrut 15 x^{2} \) \(\mathstrut -\mathstrut 6 x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $16$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 8]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(5821863490955437=19^{2}\cdot 101^{2}\cdot 277\cdot 2389^{2}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $9.67$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $19, 101, 277, 2389$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{37} a^{15} - \frac{15}{37} a^{14} - \frac{10}{37} a^{13} - \frac{18}{37} a^{12} - \frac{1}{37} a^{11} - \frac{16}{37} a^{10} - \frac{16}{37} a^{9} - \frac{2}{37} a^{8} + \frac{10}{37} a^{7} - \frac{13}{37} a^{6} + \frac{1}{37} a^{5} - \frac{18}{37} a^{4} - \frac{9}{37} a^{3} + \frac{5}{37} a^{2} - \frac{3}{37} a - \frac{10}{37}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $7$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( \frac{378}{37} a^{15} - \frac{1267}{37} a^{14} + \frac{2954}{37} a^{13} - \frac{4510}{37} a^{12} + \frac{5764}{37} a^{11} - \frac{6455}{37} a^{10} + \frac{7124}{37} a^{9} - \frac{6676}{37} a^{8} + \frac{5075}{37} a^{7} - \frac{1954}{37} a^{6} + \frac{933}{37} a^{5} - \frac{1994}{37} a^{4} + \frac{4331}{37} a^{3} - \frac{4733}{37} a^{2} + \frac{2603}{37} a - \frac{561}{37} \),  \( \frac{480}{37} a^{15} - \frac{1613}{37} a^{14} + \frac{3784}{37} a^{13} - \frac{5791}{37} a^{12} + \frac{7438}{37} a^{11} - \frac{8346}{37} a^{10} + \frac{9229}{37} a^{9} - \frac{8693}{37} a^{8} + \frac{6650}{37} a^{7} - \frac{2651}{37} a^{6} + \frac{1294}{37} a^{5} - \frac{2572}{37} a^{4} + \frac{5596}{37} a^{3} - \frac{6110}{37} a^{2} + \frac{3407}{37} a - \frac{804}{37} \),  \( a \),  \( \frac{344}{37} a^{15} - \frac{1127}{37} a^{14} + \frac{2628}{37} a^{13} - \frac{3972}{37} a^{12} + \frac{5095}{37} a^{11} - \frac{5689}{37} a^{10} + \frac{6299}{37} a^{9} - \frac{5868}{37} a^{8} + \frac{4476}{37} a^{7} - \frac{1697}{37} a^{6} + \frac{899}{37} a^{5} - \frac{1752}{37} a^{4} + \frac{3860}{37} a^{3} - \frac{4126}{37} a^{2} + \frac{2261}{37} a - \frac{517}{37} \),  \( \frac{344}{37} a^{15} - \frac{1127}{37} a^{14} + \frac{2591}{37} a^{13} - \frac{3898}{37} a^{12} + \frac{4947}{37} a^{11} - \frac{5541}{37} a^{10} + \frac{6114}{37} a^{9} - \frac{5683}{37} a^{8} + \frac{4254}{37} a^{7} - \frac{1586}{37} a^{6} + \frac{825}{37} a^{5} - \frac{1826}{37} a^{4} + \frac{3749}{37} a^{3} - \frac{4015}{37} a^{2} + \frac{2076}{37} a - \frac{443}{37} \),  \( \frac{405}{37} a^{15} - \frac{1413}{37} a^{14} + \frac{3313}{37} a^{13} - \frac{5144}{37} a^{12} + \frac{6588}{37} a^{11} - \frac{7442}{37} a^{10} + \frac{8209}{37} a^{9} - \frac{7803}{37} a^{8} + \frac{5974}{37} a^{7} - \frac{2490}{37} a^{6} + \frac{1108}{37} a^{5} - \frac{2295}{37} a^{4} + \frac{4902}{37} a^{3} - \frac{5523}{37} a^{2} + \frac{3114}{37} a - \frac{720}{37} \),  \( \frac{324}{37} a^{15} - \frac{1123}{37} a^{14} + \frac{2643}{37} a^{13} - \frac{4093}{37} a^{12} + \frac{5263}{37} a^{11} - \frac{5924}{37} a^{10} + \frac{6545}{37} a^{9} - \frac{6198}{37} a^{8} + \frac{4757}{37} a^{7} - \frac{1955}{37} a^{6} + \frac{879}{37} a^{5} - \frac{1762}{37} a^{4} + \frac{3892}{37} a^{3} - \frac{4337}{37} a^{2} + \frac{2506}{37} a - \frac{576}{37} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 10.6211653408 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

16T1948:

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A non-solvable group of order 10321920
The 185 conjugacy class representatives for t16n1948 are not computed
Character table for t16n1948 is not computed

Intermediate fields

8.2.4584491.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$
19.10.0.1$x^{10} + x^{2} - 2 x + 14$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$101$$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$
101.6.0.1$x^{6} - x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
277Data not computed
2389Data not computed