Properties

Label 16.0.3750900906670801.1
Degree $16$
Signature $[0, 8]$
Discriminant $13^{2}\cdot 43^{2}\cdot 331^{4}$
Root discriminant $9.41$
Ramified primes $13, 43, 331$
Class number $1$
Class group Trivial
Galois Group 16T1664

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, 12, -26, 45, -65, 81, -88, 85, -73, 58, -43, 29, -18, 10, -4, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 10*x^14 - 18*x^13 + 29*x^12 - 43*x^11 + 58*x^10 - 73*x^9 + 85*x^8 - 88*x^7 + 81*x^6 - 65*x^5 + 45*x^4 - 26*x^3 + 12*x^2 - 4*x + 1)
gp: K = bnfinit(x^16 - 4*x^15 + 10*x^14 - 18*x^13 + 29*x^12 - 43*x^11 + 58*x^10 - 73*x^9 + 85*x^8 - 88*x^7 + 81*x^6 - 65*x^5 + 45*x^4 - 26*x^3 + 12*x^2 - 4*x + 1, 1)

Normalized defining polynomial

\(x^{16} \) \(\mathstrut -\mathstrut 4 x^{15} \) \(\mathstrut +\mathstrut 10 x^{14} \) \(\mathstrut -\mathstrut 18 x^{13} \) \(\mathstrut +\mathstrut 29 x^{12} \) \(\mathstrut -\mathstrut 43 x^{11} \) \(\mathstrut +\mathstrut 58 x^{10} \) \(\mathstrut -\mathstrut 73 x^{9} \) \(\mathstrut +\mathstrut 85 x^{8} \) \(\mathstrut -\mathstrut 88 x^{7} \) \(\mathstrut +\mathstrut 81 x^{6} \) \(\mathstrut -\mathstrut 65 x^{5} \) \(\mathstrut +\mathstrut 45 x^{4} \) \(\mathstrut -\mathstrut 26 x^{3} \) \(\mathstrut +\mathstrut 12 x^{2} \) \(\mathstrut -\mathstrut 4 x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $16$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 8]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(3750900906670801=13^{2}\cdot 43^{2}\cdot 331^{4}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $9.41$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $13, 43, 331$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{113} a^{15} - \frac{31}{113} a^{14} + \frac{56}{113} a^{13} + \frac{52}{113} a^{12} - \frac{19}{113} a^{11} + \frac{18}{113} a^{10} + \frac{24}{113} a^{9} - \frac{43}{113} a^{8} + \frac{3}{113} a^{7} - \frac{56}{113} a^{6} + \frac{11}{113} a^{5} - \frac{23}{113} a^{4} - \frac{12}{113} a^{3} - \frac{41}{113} a^{2} - \frac{11}{113} a - \frac{46}{113}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $7$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( \frac{56}{113} a^{15} - \frac{154}{113} a^{14} + \frac{198}{113} a^{13} - \frac{26}{113} a^{12} - \frac{160}{113} a^{11} + \frac{330}{113} a^{10} - \frac{690}{113} a^{9} + \frac{1321}{113} a^{8} - \frac{1866}{113} a^{7} + \frac{2627}{113} a^{6} - \frac{3226}{113} a^{5} + \frac{3006}{113} a^{4} - \frac{2367}{113} a^{3} + \frac{1546}{113} a^{2} - \frac{729}{113} a + \frac{249}{113} \),  \( \frac{287}{113} a^{15} - \frac{1100}{113} a^{14} + \frac{2625}{113} a^{13} - \frac{4399}{113} a^{12} + \frac{6751}{113} a^{11} - \frac{9750}{113} a^{10} + \frac{12877}{113} a^{9} - \frac{15731}{113} a^{8} + \frac{17585}{113} a^{7} - \frac{17315}{113} a^{6} + \frac{14683}{113} a^{5} - \frac{10669}{113} a^{4} + \frac{6613}{113} a^{3} - \frac{3179}{113} a^{2} + \frac{1137}{113} a - \frac{207}{113} \),  \( \frac{116}{113} a^{15} - \frac{545}{113} a^{14} + \frac{1298}{113} a^{13} - \frac{2330}{113} a^{12} + \frac{3559}{113} a^{11} - \frac{5370}{113} a^{10} + \frac{7078}{113} a^{9} - \frac{8717}{113} a^{8} + \frac{10066}{113} a^{7} - \frac{10112}{113} a^{6} + \frac{8847}{113} a^{5} - \frac{6849}{113} a^{4} + \frac{4258}{113} a^{3} - \frac{2157}{113} a^{2} + \frac{758}{113} a - \frac{138}{113} \),  \( \frac{91}{113} a^{15} - \frac{561}{113} a^{14} + \frac{1593}{113} a^{13} - \frac{3178}{113} a^{12} + \frac{5051}{113} a^{11} - \frac{7515}{113} a^{10} + \frac{10320}{113} a^{9} - \frac{13066}{113} a^{8} + \frac{15415}{113} a^{7} - \frac{16283}{113} a^{6} + \frac{14900}{113} a^{5} - \frac{11698}{113} a^{4} + \frac{7722}{113} a^{3} - \frac{4183}{113} a^{2} + \frac{1598}{113} a - \frac{457}{113} \),  \( \frac{112}{113} a^{15} - \frac{308}{113} a^{14} + \frac{735}{113} a^{13} - \frac{1182}{113} a^{12} + \frac{1940}{113} a^{11} - \frac{2617}{113} a^{10} + \frac{3366}{113} a^{9} - \frac{4251}{113} a^{8} + \frac{4630}{113} a^{7} - \frac{4351}{113} a^{6} + \frac{3831}{113} a^{5} - \frac{2576}{113} a^{4} + \frac{1481}{113} a^{3} - \frac{637}{113} a^{2} + \frac{237}{113} a + \frac{46}{113} \),  \( \frac{124}{113} a^{15} - \frac{454}{113} a^{14} + \frac{1068}{113} a^{13} - \frac{1801}{113} a^{12} + \frac{2842}{113} a^{11} - \frac{4209}{113} a^{10} + \frac{5575}{113} a^{9} - \frac{6914}{113} a^{8} + \frac{7830}{113} a^{7} - \frac{7961}{113} a^{6} + \frac{7127}{113} a^{5} - \frac{5564}{113} a^{4} + \frac{3823}{113} a^{3} - \frac{2033}{113} a^{2} + \frac{896}{113} a - \frac{280}{113} \),  \( \frac{363}{113} a^{15} - \frac{1309}{113} a^{14} + \frac{3152}{113} a^{13} - \frac{5306}{113} a^{12} + \frac{8358}{113} a^{11} - \frac{11998}{113} a^{10} + \frac{15831}{113} a^{9} - \frac{19451}{113} a^{8} + \frac{21881}{113} a^{7} - \frac{21684}{113} a^{6} + \frac{18683}{113} a^{5} - \frac{13660}{113} a^{4} + \frac{8526}{113} a^{3} - \frac{4035}{113} a^{2} + \frac{1318}{113} a - \frac{200}{113} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 8.20527213707 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

16T1664:

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 6144
The 105 conjugacy class representatives for t16n1664 are not computed
Character table for t16n1664 is not computed

Intermediate fields

4.2.331.1, 8.0.1424293.1, 8.2.61244599.1, 8.2.4711123.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
43Data not computed
331Data not computed