Properties

Label 16.0.3347302586328125.1
Degree $16$
Signature $[0, 8]$
Discriminant $3.347\times 10^{15}$
Root discriminant \(9.34\)
Ramified primes $5,61,101,151$
Class number $1$
Class group trivial
Galois group $C_2^6.S_4^2:D_4$ (as 16T1905)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 20*x^14 - 45*x^13 + 76*x^12 - 98*x^11 + 94*x^10 - 58*x^9 + 8*x^8 + 28*x^7 - 37*x^6 + 28*x^5 - 13*x^4 + 6*x^2 - 4*x + 1)
 
gp: K = bnfinit(y^16 - 6*y^15 + 20*y^14 - 45*y^13 + 76*y^12 - 98*y^11 + 94*y^10 - 58*y^9 + 8*y^8 + 28*y^7 - 37*y^6 + 28*y^5 - 13*y^4 + 6*y^2 - 4*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 6*x^15 + 20*x^14 - 45*x^13 + 76*x^12 - 98*x^11 + 94*x^10 - 58*x^9 + 8*x^8 + 28*x^7 - 37*x^6 + 28*x^5 - 13*x^4 + 6*x^2 - 4*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 6*x^15 + 20*x^14 - 45*x^13 + 76*x^12 - 98*x^11 + 94*x^10 - 58*x^9 + 8*x^8 + 28*x^7 - 37*x^6 + 28*x^5 - 13*x^4 + 6*x^2 - 4*x + 1)
 

\( x^{16} - 6 x^{15} + 20 x^{14} - 45 x^{13} + 76 x^{12} - 98 x^{11} + 94 x^{10} - 58 x^{9} + 8 x^{8} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3347302586328125\) \(\medspace = 5^{8}\cdot 61^{2}\cdot 101\cdot 151^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(9.34\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}61^{1/2}101^{1/2}151^{1/2}\approx 2156.7463921379353$
Ramified primes:   \(5\), \(61\), \(101\), \(151\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{101}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{15}-3a^{14}+5a^{13}-3a^{12}-4a^{11}+17a^{10}-29a^{9}+30a^{8}-17a^{7}+4a^{6}+2a^{5}-5a^{4}+7a^{3}-2a^{2}-a$, $a^{15}-5a^{14}+13a^{13}-22a^{12}+26a^{11}-19a^{10}-a^{9}+22a^{8}-28a^{7}+17a^{6}-6a^{5}-a^{4}+6a^{3}-7a^{2}+a+1$, $a^{14}-4a^{13}+10a^{12}-17a^{11}+23a^{10}-23a^{9}+16a^{8}-7a^{7}+2a^{6}-2a^{4}+a^{3}+a^{2}+a-1$, $3a^{15}-17a^{14}+52a^{13}-108a^{12}+168a^{11}-198a^{10}+166a^{9}-77a^{8}-16a^{7}+63a^{6}-63a^{5}+42a^{4}-14a^{3}-8a^{2}+11a-4$, $a^{14}-4a^{13}+10a^{12}-17a^{11}+23a^{10}-23a^{9}+16a^{8}-7a^{7}+2a^{6}-2a^{4}+a^{3}+a^{2}-1$, $a^{15}-5a^{14}+13a^{13}-22a^{12}+26a^{11}-18a^{10}-3a^{9}+26a^{8}-32a^{7}+21a^{6}-6a^{5}-2a^{4}+7a^{3}-6a^{2}+a+1$, $a^{15}-3a^{14}+6a^{13}-7a^{12}+6a^{11}-6a^{9}+7a^{8}-a^{7}-3a^{6}+4a^{5}-4a^{4}+4a^{3}+a^{2}-a+1$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 7.65571718077 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 7.65571718077 \cdot 1}{2\cdot\sqrt{3347302586328125}}\cr\approx \mathstrut & 0.160711644811 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 20*x^14 - 45*x^13 + 76*x^12 - 98*x^11 + 94*x^10 - 58*x^9 + 8*x^8 + 28*x^7 - 37*x^6 + 28*x^5 - 13*x^4 + 6*x^2 - 4*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 6*x^15 + 20*x^14 - 45*x^13 + 76*x^12 - 98*x^11 + 94*x^10 - 58*x^9 + 8*x^8 + 28*x^7 - 37*x^6 + 28*x^5 - 13*x^4 + 6*x^2 - 4*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 6*x^15 + 20*x^14 - 45*x^13 + 76*x^12 - 98*x^11 + 94*x^10 - 58*x^9 + 8*x^8 + 28*x^7 - 37*x^6 + 28*x^5 - 13*x^4 + 6*x^2 - 4*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 6*x^15 + 20*x^14 - 45*x^13 + 76*x^12 - 98*x^11 + 94*x^10 - 58*x^9 + 8*x^8 + 28*x^7 - 37*x^6 + 28*x^5 - 13*x^4 + 6*x^2 - 4*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^6.S_4^2:D_4$ (as 16T1905):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 294912
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$
Character table for $C_2^6.S_4^2:D_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 8.2.5756875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $16$ $16$ R ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(61\) Copy content Toggle raw display $\Q_{61}$$x + 59$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 59$$1$$1$$0$Trivial$[\ ]$
61.2.0.1$x^{2} + 60 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.4.0.1$x^{4} + 3 x^{2} + 40 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
61.4.2.1$x^{4} + 4878 x^{3} + 6091587 x^{2} + 348450174 x + 20534983$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
61.4.0.1$x^{4} + 3 x^{2} + 40 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
\(101\) Copy content Toggle raw display $\Q_{101}$$x + 99$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 99$$1$$1$$0$Trivial$[\ ]$
101.2.1.1$x^{2} + 101$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} + 97 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
\(151\) Copy content Toggle raw display 151.2.1.2$x^{2} + 151$$2$$1$$1$$C_2$$[\ ]_{2}$
151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.1.2$x^{2} + 151$$2$$1$$1$$C_2$$[\ ]_{2}$
151.4.0.1$x^{4} + 13 x^{2} + 89 x + 6$$1$$4$$0$$C_4$$[\ ]^{4}$