Properties

Label 16.0.249...761.3
Degree $16$
Signature $[0, 8]$
Discriminant $2.499\times 10^{21}$
Root discriminant \(21.75\)
Ramified primes $3,7,13$
Class number $4$ (GRH)
Class group [4] (GRH)
Galois group $C_2^2\wr C_2$ (as 16T39)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 9*x^14 - 3*x^13 + 25*x^12 + 75*x^11 + 111*x^10 - 360*x^9 - 501*x^8 + 1266*x^7 + 1104*x^6 - 2487*x^5 - 629*x^4 + 2982*x^3 - 420*x^2 - 1176*x + 784)
 
gp: K = bnfinit(y^16 - 9*y^14 - 3*y^13 + 25*y^12 + 75*y^11 + 111*y^10 - 360*y^9 - 501*y^8 + 1266*y^7 + 1104*y^6 - 2487*y^5 - 629*y^4 + 2982*y^3 - 420*y^2 - 1176*y + 784, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 9*x^14 - 3*x^13 + 25*x^12 + 75*x^11 + 111*x^10 - 360*x^9 - 501*x^8 + 1266*x^7 + 1104*x^6 - 2487*x^5 - 629*x^4 + 2982*x^3 - 420*x^2 - 1176*x + 784);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 9*x^14 - 3*x^13 + 25*x^12 + 75*x^11 + 111*x^10 - 360*x^9 - 501*x^8 + 1266*x^7 + 1104*x^6 - 2487*x^5 - 629*x^4 + 2982*x^3 - 420*x^2 - 1176*x + 784)
 

\( x^{16} - 9 x^{14} - 3 x^{13} + 25 x^{12} + 75 x^{11} + 111 x^{10} - 360 x^{9} - 501 x^{8} + 1266 x^{7} + \cdots + 784 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2499114735283240471761\) \(\medspace = 3^{12}\cdot 7^{8}\cdot 13^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(21.75\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{3/4}7^{1/2}13^{1/2}\approx 21.745111415357325$
Ramified primes:   \(3\), \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a$, $\frac{1}{14}a^{12}-\frac{1}{14}a^{11}-\frac{3}{14}a^{10}+\frac{1}{7}a^{9}+\frac{1}{14}a^{8}-\frac{3}{14}a^{6}-\frac{5}{14}a^{4}-\frac{3}{14}a^{3}-\frac{3}{14}a^{2}$, $\frac{1}{14}a^{13}+\frac{3}{14}a^{11}-\frac{1}{14}a^{10}+\frac{3}{14}a^{9}+\frac{1}{14}a^{8}-\frac{3}{14}a^{7}+\frac{2}{7}a^{6}-\frac{5}{14}a^{5}+\frac{3}{7}a^{4}-\frac{3}{7}a^{3}-\frac{3}{14}a^{2}-\frac{1}{2}a$, $\frac{1}{364}a^{14}-\frac{1}{182}a^{13}+\frac{1}{52}a^{12}-\frac{67}{364}a^{11}+\frac{5}{52}a^{10}+\frac{59}{364}a^{9}-\frac{29}{364}a^{8}+\frac{47}{182}a^{7}+\frac{3}{364}a^{6}-\frac{41}{182}a^{5}-\frac{89}{182}a^{4}+\frac{109}{364}a^{3}-\frac{97}{364}a^{2}+\frac{6}{13}a+\frac{2}{13}$, $\frac{1}{73\!\cdots\!72}a^{15}-\frac{30\!\cdots\!97}{36\!\cdots\!36}a^{14}-\frac{25\!\cdots\!01}{73\!\cdots\!72}a^{13}-\frac{50\!\cdots\!99}{38\!\cdots\!88}a^{12}-\frac{50\!\cdots\!57}{73\!\cdots\!72}a^{11}-\frac{16\!\cdots\!59}{73\!\cdots\!72}a^{10}-\frac{47\!\cdots\!99}{73\!\cdots\!72}a^{9}-\frac{15\!\cdots\!87}{36\!\cdots\!36}a^{8}+\frac{28\!\cdots\!51}{56\!\cdots\!44}a^{7}-\frac{67\!\cdots\!73}{26\!\cdots\!74}a^{6}+\frac{18\!\cdots\!15}{91\!\cdots\!09}a^{5}+\frac{95\!\cdots\!97}{73\!\cdots\!72}a^{4}+\frac{82\!\cdots\!25}{73\!\cdots\!72}a^{3}-\frac{39\!\cdots\!95}{91\!\cdots\!09}a^{2}+\frac{47\!\cdots\!75}{71\!\cdots\!02}a+\frac{48\!\cdots\!85}{13\!\cdots\!87}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{3990085306109}{1150263891112264} a^{15} - \frac{110537005045}{287565972778066} a^{14} - \frac{32036728053753}{1150263891112264} a^{13} - \frac{10886467117747}{1150263891112264} a^{12} + \frac{67796389981069}{1150263891112264} a^{11} + \frac{295482012452391}{1150263891112264} a^{10} + \frac{497758045943555}{1150263891112264} a^{9} - \frac{152093074380366}{143782986389033} a^{8} - \frac{1538612586141973}{1150263891112264} a^{7} + \frac{1790605943101659}{575131945556132} a^{6} + \frac{644722568357335}{287565972778066} a^{5} - \frac{5866594218312963}{1150263891112264} a^{4} - \frac{234976527859437}{1150263891112264} a^{3} + \frac{2357643201278155}{575131945556132} a^{2} - \frac{143212850294402}{143782986389033} a + \frac{22369318065284}{143782986389033} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{37\!\cdots\!69}{36\!\cdots\!36}a^{15}+\frac{10\!\cdots\!51}{36\!\cdots\!36}a^{14}-\frac{53\!\cdots\!13}{36\!\cdots\!36}a^{13}-\frac{24\!\cdots\!43}{96\!\cdots\!22}a^{12}-\frac{28\!\cdots\!20}{70\!\cdots\!93}a^{11}+\frac{12\!\cdots\!73}{18\!\cdots\!18}a^{10}+\frac{20\!\cdots\!83}{91\!\cdots\!09}a^{9}+\frac{11\!\cdots\!69}{36\!\cdots\!36}a^{8}-\frac{38\!\cdots\!97}{36\!\cdots\!36}a^{7}-\frac{42\!\cdots\!17}{36\!\cdots\!36}a^{6}+\frac{55\!\cdots\!93}{18\!\cdots\!18}a^{5}+\frac{63\!\cdots\!37}{36\!\cdots\!36}a^{4}-\frac{96\!\cdots\!47}{18\!\cdots\!18}a^{3}+\frac{12\!\cdots\!11}{36\!\cdots\!36}a^{2}+\frac{28\!\cdots\!13}{71\!\cdots\!02}a-\frac{17\!\cdots\!10}{13\!\cdots\!87}$, $\frac{25\!\cdots\!13}{19\!\cdots\!56}a^{15}-\frac{191994923431172}{24\!\cdots\!57}a^{14}-\frac{27\!\cdots\!89}{19\!\cdots\!56}a^{13}+\frac{10199476379959}{10\!\cdots\!24}a^{12}+\frac{75\!\cdots\!77}{15\!\cdots\!12}a^{11}+\frac{22\!\cdots\!47}{19\!\cdots\!56}a^{10}+\frac{16\!\cdots\!39}{19\!\cdots\!56}a^{9}-\frac{38\!\cdots\!27}{49\!\cdots\!14}a^{8}-\frac{18\!\cdots\!29}{19\!\cdots\!56}a^{7}+\frac{20\!\cdots\!59}{99\!\cdots\!28}a^{6}+\frac{48\!\cdots\!30}{24\!\cdots\!57}a^{5}-\frac{10\!\cdots\!41}{28\!\cdots\!08}a^{4}-\frac{36\!\cdots\!21}{19\!\cdots\!56}a^{3}+\frac{33\!\cdots\!73}{14\!\cdots\!04}a^{2}-\frac{33\!\cdots\!46}{35\!\cdots\!51}a-\frac{15\!\cdots\!58}{35\!\cdots\!51}$, $\frac{19\!\cdots\!75}{18\!\cdots\!18}a^{15}+\frac{11\!\cdots\!64}{91\!\cdots\!09}a^{14}-\frac{16\!\cdots\!93}{14\!\cdots\!86}a^{13}-\frac{12\!\cdots\!77}{96\!\cdots\!22}a^{12}-\frac{17\!\cdots\!47}{18\!\cdots\!18}a^{11}+\frac{85\!\cdots\!71}{18\!\cdots\!18}a^{10}+\frac{21\!\cdots\!23}{18\!\cdots\!18}a^{9}+\frac{10\!\cdots\!28}{91\!\cdots\!09}a^{8}-\frac{11\!\cdots\!05}{18\!\cdots\!18}a^{7}-\frac{53\!\cdots\!63}{70\!\cdots\!93}a^{6}+\frac{16\!\cdots\!63}{91\!\cdots\!09}a^{5}+\frac{20\!\cdots\!17}{18\!\cdots\!18}a^{4}-\frac{56\!\cdots\!65}{18\!\cdots\!18}a^{3}-\frac{59\!\cdots\!55}{13\!\cdots\!87}a^{2}+\frac{51\!\cdots\!48}{35\!\cdots\!51}a-\frac{97\!\cdots\!83}{13\!\cdots\!87}$, $\frac{33\!\cdots\!65}{28\!\cdots\!72}a^{15}-\frac{12\!\cdots\!73}{36\!\cdots\!36}a^{14}-\frac{21\!\cdots\!59}{36\!\cdots\!36}a^{13}-\frac{19\!\cdots\!65}{96\!\cdots\!22}a^{12}-\frac{16\!\cdots\!79}{18\!\cdots\!18}a^{11}+\frac{64\!\cdots\!49}{91\!\cdots\!09}a^{10}+\frac{17\!\cdots\!30}{91\!\cdots\!09}a^{9}-\frac{27\!\cdots\!47}{36\!\cdots\!36}a^{8}+\frac{42\!\cdots\!29}{36\!\cdots\!36}a^{7}-\frac{35\!\cdots\!31}{36\!\cdots\!36}a^{6}-\frac{22\!\cdots\!71}{18\!\cdots\!18}a^{5}+\frac{20\!\cdots\!95}{36\!\cdots\!36}a^{4}+\frac{64\!\cdots\!99}{18\!\cdots\!18}a^{3}-\frac{67\!\cdots\!43}{52\!\cdots\!48}a^{2}-\frac{87\!\cdots\!17}{71\!\cdots\!02}a+\frac{19\!\cdots\!57}{13\!\cdots\!87}$, $\frac{39\!\cdots\!18}{91\!\cdots\!09}a^{15}+\frac{60\!\cdots\!77}{52\!\cdots\!48}a^{14}-\frac{49\!\cdots\!14}{91\!\cdots\!09}a^{13}-\frac{25\!\cdots\!59}{19\!\cdots\!44}a^{12}+\frac{46\!\cdots\!47}{28\!\cdots\!72}a^{11}+\frac{39\!\cdots\!33}{52\!\cdots\!48}a^{10}+\frac{71\!\cdots\!75}{52\!\cdots\!48}a^{9}-\frac{51\!\cdots\!39}{36\!\cdots\!36}a^{8}-\frac{17\!\cdots\!97}{18\!\cdots\!18}a^{7}-\frac{53\!\cdots\!13}{52\!\cdots\!48}a^{6}+\frac{45\!\cdots\!21}{18\!\cdots\!18}a^{5}+\frac{95\!\cdots\!73}{91\!\cdots\!09}a^{4}-\frac{14\!\cdots\!85}{36\!\cdots\!36}a^{3}+\frac{12\!\cdots\!71}{36\!\cdots\!36}a^{2}+\frac{20\!\cdots\!99}{71\!\cdots\!02}a+\frac{24\!\cdots\!01}{13\!\cdots\!87}$, $\frac{16\!\cdots\!09}{73\!\cdots\!72}a^{15}-\frac{20\!\cdots\!15}{36\!\cdots\!36}a^{14}-\frac{16\!\cdots\!25}{73\!\cdots\!72}a^{13}-\frac{21\!\cdots\!51}{38\!\cdots\!88}a^{12}+\frac{52\!\cdots\!07}{73\!\cdots\!72}a^{11}+\frac{14\!\cdots\!93}{73\!\cdots\!72}a^{10}+\frac{14\!\cdots\!17}{73\!\cdots\!72}a^{9}-\frac{39\!\cdots\!93}{36\!\cdots\!36}a^{8}-\frac{10\!\cdots\!37}{73\!\cdots\!72}a^{7}+\frac{28\!\cdots\!09}{91\!\cdots\!09}a^{6}+\frac{36\!\cdots\!14}{91\!\cdots\!09}a^{5}-\frac{36\!\cdots\!63}{73\!\cdots\!72}a^{4}-\frac{33\!\cdots\!95}{73\!\cdots\!72}a^{3}+\frac{77\!\cdots\!79}{18\!\cdots\!18}a^{2}+\frac{15\!\cdots\!69}{71\!\cdots\!02}a-\frac{11\!\cdots\!19}{13\!\cdots\!87}$, $\frac{99\!\cdots\!87}{36\!\cdots\!36}a^{15}-\frac{96\!\cdots\!53}{36\!\cdots\!36}a^{14}-\frac{47\!\cdots\!27}{36\!\cdots\!36}a^{13}+\frac{10\!\cdots\!23}{48\!\cdots\!11}a^{12}-\frac{44\!\cdots\!10}{91\!\cdots\!09}a^{11}+\frac{56\!\cdots\!13}{91\!\cdots\!09}a^{10}+\frac{34\!\cdots\!19}{18\!\cdots\!18}a^{9}-\frac{15\!\cdots\!23}{36\!\cdots\!36}a^{8}+\frac{85\!\cdots\!19}{52\!\cdots\!48}a^{7}+\frac{16\!\cdots\!03}{52\!\cdots\!48}a^{6}-\frac{79\!\cdots\!03}{18\!\cdots\!18}a^{5}-\frac{12\!\cdots\!85}{36\!\cdots\!36}a^{4}+\frac{11\!\cdots\!24}{10\!\cdots\!99}a^{3}+\frac{46\!\cdots\!79}{36\!\cdots\!36}a^{2}-\frac{23\!\cdots\!81}{35\!\cdots\!51}a+\frac{54\!\cdots\!52}{13\!\cdots\!87}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 15235.3835913 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 15235.3835913 \cdot 4}{6\cdot\sqrt{2499114735283240471761}}\cr\approx \mathstrut & 0.493523666160 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 9*x^14 - 3*x^13 + 25*x^12 + 75*x^11 + 111*x^10 - 360*x^9 - 501*x^8 + 1266*x^7 + 1104*x^6 - 2487*x^5 - 629*x^4 + 2982*x^3 - 420*x^2 - 1176*x + 784)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 9*x^14 - 3*x^13 + 25*x^12 + 75*x^11 + 111*x^10 - 360*x^9 - 501*x^8 + 1266*x^7 + 1104*x^6 - 2487*x^5 - 629*x^4 + 2982*x^3 - 420*x^2 - 1176*x + 784, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 9*x^14 - 3*x^13 + 25*x^12 + 75*x^11 + 111*x^10 - 360*x^9 - 501*x^8 + 1266*x^7 + 1104*x^6 - 2487*x^5 - 629*x^4 + 2982*x^3 - 420*x^2 - 1176*x + 784);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 9*x^14 - 3*x^13 + 25*x^12 + 75*x^11 + 111*x^10 - 360*x^9 - 501*x^8 + 1266*x^7 + 1104*x^6 - 2487*x^5 - 629*x^4 + 2982*x^3 - 420*x^2 - 1176*x + 784);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\wr C_2$ (as 16T39):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_2^2\wr C_2$
Character table for $C_2^2\wr C_2$

Intermediate fields

\(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), 4.2.223587.4 x2, 4.0.117.1, 4.0.31941.1 x2, 4.0.5733.1, 4.0.2457.1, \(\Q(\sqrt{-3}, \sqrt{-7})\), 4.0.2457.2, 8.0.295805601.3, 8.0.1020227481.1, 8.0.49991146569.4, 8.0.32867289.1, 8.0.49991146569.5, 8.0.49991146569.6, 8.0.1020227481.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 8 siblings: 8.0.6036849.2, 8.0.6036849.1, 8.0.295805601.1, 8.0.49991146569.4, 8.0.1020227481.2, 8.0.295805601.2, 8.0.49991146569.6, 8.0.1020227481.1
Degree 16 siblings: 16.0.1040864112987605361.1, 16.0.87500953582971201.1, 16.0.2499114735283240471761.1, 16.0.2499114735283240471761.5, 16.0.2499114735283240471761.2, 16.4.2499114735283240471761.1
Minimal sibling: 8.0.6036849.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}$ R ${\href{/padicField/5.4.0.1}{4} }^{4}$ R ${\href{/padicField/11.4.0.1}{4} }^{4}$ R ${\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.8.6.2$x^{8} + 6 x^{5} + 6 x^{4} + 18 x^{2} + 18 x + 9$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 6 x^{5} + 6 x^{4} + 18 x^{2} + 18 x + 9$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
\(7\) Copy content Toggle raw display 7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(13\) Copy content Toggle raw display 13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$