Properties

Label 16.0.162...856.14
Degree $16$
Signature $[0, 8]$
Discriminant $1.624\times 10^{20}$
Root discriminant \(18.33\)
Ramified primes $2,3,7$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $C_2^2 \times D_4$ (as 16T25)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^14 + 41*x^12 - 144*x^10 + 320*x^8 - 438*x^6 + 365*x^4 - 182*x^2 + 49)
 
gp: K = bnfinit(y^16 - 8*y^14 + 41*y^12 - 144*y^10 + 320*y^8 - 438*y^6 + 365*y^4 - 182*y^2 + 49, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 8*x^14 + 41*x^12 - 144*x^10 + 320*x^8 - 438*x^6 + 365*x^4 - 182*x^2 + 49);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 8*x^14 + 41*x^12 - 144*x^10 + 320*x^8 - 438*x^6 + 365*x^4 - 182*x^2 + 49)
 

\( x^{16} - 8x^{14} + 41x^{12} - 144x^{10} + 320x^{8} - 438x^{6} + 365x^{4} - 182x^{2} + 49 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(162447943996702457856\) \(\medspace = 2^{32}\cdot 3^{8}\cdot 7^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(18.33\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{9/4}3^{1/2}7^{1/2}\approx 21.798526485920096$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6}a^{12}+\frac{1}{3}a^{10}-\frac{1}{3}a^{6}+\frac{1}{3}a^{2}+\frac{1}{6}$, $\frac{1}{6}a^{13}+\frac{1}{3}a^{11}-\frac{1}{3}a^{7}+\frac{1}{3}a^{3}+\frac{1}{6}a$, $\frac{1}{5502}a^{14}+\frac{419}{5502}a^{12}+\frac{176}{917}a^{10}+\frac{719}{2751}a^{8}-\frac{313}{917}a^{6}-\frac{443}{2751}a^{4}+\frac{1681}{5502}a^{2}-\frac{63}{262}$, $\frac{1}{38514}a^{15}+\frac{1585}{19257}a^{13}-\frac{1658}{6419}a^{11}+\frac{8972}{19257}a^{9}-\frac{2147}{6419}a^{7}-\frac{5945}{19257}a^{5}-\frac{3821}{38514}a^{3}+\frac{34}{917}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{83}{786} a^{14} - \frac{77}{131} a^{12} + \frac{1118}{393} a^{10} - \frac{3203}{393} a^{8} + \frac{5248}{393} a^{6} - \frac{5329}{393} a^{4} + \frac{2317}{262} a^{2} - \frac{998}{393} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{110}{917}a^{14}-\frac{4979}{5502}a^{12}+\frac{11941}{2751}a^{10}-\frac{13299}{917}a^{8}+\frac{77180}{2751}a^{6}-\frac{27768}{917}a^{4}+\frac{50380}{2751}a^{2}-\frac{4613}{786}$, $\frac{1625}{38514}a^{15}-\frac{4813}{19257}a^{13}+\frac{8149}{6419}a^{11}-\frac{75077}{19257}a^{9}+\frac{47994}{6419}a^{7}-\frac{186181}{19257}a^{5}+\frac{261227}{38514}a^{3}-\frac{687}{917}a$, $\frac{403}{6419}a^{15}-\frac{6161}{12838}a^{13}+\frac{15669}{6419}a^{11}-\frac{54133}{6419}a^{9}+\frac{117067}{6419}a^{7}-\frac{157152}{6419}a^{5}+\frac{122658}{6419}a^{3}-\frac{12557}{1834}a$, $\frac{3611}{12838}a^{15}-\frac{23883}{12838}a^{13}+\frac{57019}{6419}a^{11}-\frac{178533}{6419}a^{9}+\frac{318536}{6419}a^{7}-\frac{316790}{6419}a^{5}+\frac{337007}{12838}a^{3}-\frac{12545}{1834}a+1$, $\frac{81}{12838}a^{15}-\frac{635}{5502}a^{14}-\frac{6389}{38514}a^{13}+\frac{3533}{5502}a^{12}+\frac{17347}{19257}a^{11}-\frac{2637}{917}a^{10}-\frac{24291}{6419}a^{9}+\frac{22109}{2751}a^{8}+\frac{193643}{19257}a^{7}-\frac{9404}{917}a^{6}-\frac{83567}{6419}a^{5}+\frac{17209}{2751}a^{4}+\frac{329621}{38514}a^{3}-\frac{16553}{5502}a^{2}-\frac{22871}{5502}a+\frac{181}{262}$, $\frac{1199}{38514}a^{15}+\frac{90}{917}a^{14}-\frac{1879}{12838}a^{13}-\frac{691}{1834}a^{12}+\frac{12263}{19257}a^{11}+\frac{1506}{917}a^{10}-\frac{26492}{19257}a^{9}-\frac{2628}{917}a^{8}+\frac{12136}{19257}a^{7}-\frac{1209}{917}a^{6}+\frac{54806}{19257}a^{5}+\frac{8292}{917}a^{4}-\frac{46477}{12838}a^{3}-\frac{8268}{917}a^{2}+\frac{3425}{5502}a+\frac{957}{262}$, $\frac{1175}{38514}a^{15}+\frac{367}{5502}a^{14}-\frac{5554}{19257}a^{13}-\frac{2117}{5502}a^{12}+\frac{9645}{6419}a^{11}+\frac{4874}{2751}a^{10}-\frac{107021}{19257}a^{9}-\frac{13978}{2751}a^{8}+\frac{83389}{6419}a^{7}+\frac{20353}{2751}a^{6}-\frac{341710}{19257}a^{5}-\frac{14027}{2751}a^{4}+\frac{517145}{38514}a^{3}+\frac{8039}{5502}a^{2}-\frac{4983}{917}a+\frac{329}{786}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 11233.812692 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 11233.812692 \cdot 2}{6\cdot\sqrt{162447943996702457856}}\cr\approx \mathstrut & 0.71365409301 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^14 + 41*x^12 - 144*x^10 + 320*x^8 - 438*x^6 + 365*x^4 - 182*x^2 + 49)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 8*x^14 + 41*x^12 - 144*x^10 + 320*x^8 - 438*x^6 + 365*x^4 - 182*x^2 + 49, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 8*x^14 + 41*x^12 - 144*x^10 + 320*x^8 - 438*x^6 + 365*x^4 - 182*x^2 + 49);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 8*x^14 + 41*x^12 - 144*x^10 + 320*x^8 - 438*x^6 + 365*x^4 - 182*x^2 + 49);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times D_4$ (as 16T25):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2^2 \times D_4$
Character table for $C_2^2 \times D_4$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{42}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-7}) \), 4.0.1008.2, 4.0.4032.1, 4.0.4032.2, 4.0.1008.1, \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{21})\), \(\Q(\sqrt{-3}, \sqrt{-14})\), \(\Q(\sqrt{-6}, \sqrt{-14})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\sqrt{-6}, \sqrt{-7})\), 8.0.796594176.2, 8.0.260112384.3, 8.0.260112384.7, 8.0.12745506816.12, 8.0.12745506816.18, 8.0.49787136.3, 8.0.796594176.11

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 16 siblings: 16.0.1082535236962615296.2, 16.0.2599167103947239325696.9, 16.8.2599167103947239325696.2, 16.0.2599167103947239325696.10, 16.0.2599167103947239325696.11, 16.0.32088482764780732416.2, 16.0.162447943996702457856.16
Minimal sibling: 16.0.1082535236962615296.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{4}$ R ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.2.0.1}{2} }^{8}$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ ${\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.2.0.1}{2} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{8}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.16.13$x^{8} + 8 x^{7} + 18 x^{6} + 4 x^{5} - 8 x^{4} + 24 x^{3} + 20 x^{2} - 8 x + 4$$4$$2$$16$$D_4\times C_2$$[2, 2, 3]^{2}$
2.8.16.13$x^{8} + 8 x^{7} + 18 x^{6} + 4 x^{5} - 8 x^{4} + 24 x^{3} + 20 x^{2} - 8 x + 4$$4$$2$$16$$D_4\times C_2$$[2, 2, 3]^{2}$
\(3\) Copy content Toggle raw display 3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(7\) Copy content Toggle raw display 7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$