Properties

Label 16.0.110...000.6
Degree $16$
Signature $[0, 8]$
Discriminant $1.101\times 10^{19}$
Root discriminant \(15.49\)
Ramified primes $2,3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^2 \times D_4$ (as 16T25)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 + 9*x^12 - 16*x^10 + 24*x^8 - 34*x^6 + 29*x^4 - 6*x^2 + 1)
 
gp: K = bnfinit(y^16 - 4*y^14 + 9*y^12 - 16*y^10 + 24*y^8 - 34*y^6 + 29*y^4 - 6*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 4*x^14 + 9*x^12 - 16*x^10 + 24*x^8 - 34*x^6 + 29*x^4 - 6*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 4*x^14 + 9*x^12 - 16*x^10 + 24*x^8 - 34*x^6 + 29*x^4 - 6*x^2 + 1)
 

\( x^{16} - 4x^{14} + 9x^{12} - 16x^{10} + 24x^{8} - 34x^{6} + 29x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(11007531417600000000\) \(\medspace = 2^{32}\cdot 3^{8}\cdot 5^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(15.49\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{9/4}3^{1/2}5^{1/2}\approx 18.42311740638763$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10}a^{12}+\frac{2}{5}a^{6}-\frac{1}{10}$, $\frac{1}{10}a^{13}+\frac{2}{5}a^{7}-\frac{1}{10}a$, $\frac{1}{170}a^{14}-\frac{7}{170}a^{12}+\frac{3}{17}a^{10}+\frac{32}{85}a^{8}+\frac{1}{85}a^{6}-\frac{4}{17}a^{4}-\frac{21}{170}a^{2}+\frac{57}{170}$, $\frac{1}{170}a^{15}-\frac{7}{170}a^{13}+\frac{3}{17}a^{11}+\frac{32}{85}a^{9}+\frac{1}{85}a^{7}-\frac{4}{17}a^{5}-\frac{21}{170}a^{3}+\frac{57}{170}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{53}{170} a^{14} + \frac{92}{85} a^{12} - \frac{40}{17} a^{10} + \frac{344}{85} a^{8} - \frac{512}{85} a^{6} + \frac{144}{17} a^{4} - \frac{1097}{170} a^{2} + \frac{113}{85} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5}{34}a^{14}-\frac{107}{170}a^{12}+\frac{24}{17}a^{10}-\frac{44}{17}a^{8}+\frac{331}{85}a^{6}-\frac{100}{17}a^{4}+\frac{167}{34}a^{2}-\frac{173}{170}$, $\frac{7}{170}a^{15}-\frac{16}{85}a^{13}+\frac{4}{17}a^{11}-\frac{31}{85}a^{9}+\frac{41}{85}a^{7}-\frac{11}{17}a^{5}+\frac{23}{170}a^{3}+\frac{106}{85}a$, $\frac{23}{85}a^{15}-\frac{169}{170}a^{13}+\frac{36}{17}a^{11}-\frac{313}{85}a^{9}+\frac{437}{85}a^{7}-\frac{116}{17}a^{5}+\frac{367}{85}a^{3}+\frac{259}{170}a$, $\frac{99}{170}a^{15}+\frac{53}{170}a^{14}-\frac{421}{170}a^{13}-\frac{92}{85}a^{12}+\frac{93}{17}a^{11}+\frac{40}{17}a^{10}-\frac{827}{85}a^{9}-\frac{344}{85}a^{8}+\frac{1238}{85}a^{7}+\frac{512}{85}a^{6}-\frac{345}{17}a^{5}-\frac{144}{17}a^{4}+\frac{3021}{170}a^{3}+\frac{927}{170}a^{2}-\frac{409}{170}a-\frac{113}{85}$, $\frac{23}{85}a^{15}+\frac{2}{85}a^{14}-\frac{76}{85}a^{13}+\frac{23}{170}a^{12}+\frac{36}{17}a^{11}-\frac{5}{17}a^{10}-\frac{313}{85}a^{9}+\frac{43}{85}a^{8}+\frac{471}{85}a^{7}-\frac{64}{85}a^{6}-\frac{133}{17}a^{5}+\frac{18}{17}a^{4}+\frac{537}{85}a^{3}-\frac{127}{85}a^{2}-\frac{219}{85}a-\frac{163}{170}$, $\frac{43}{170}a^{15}-\frac{1}{170}a^{14}-\frac{199}{170}a^{13}+\frac{12}{85}a^{12}+\frac{44}{17}a^{11}-\frac{3}{17}a^{10}-\frac{409}{85}a^{9}+\frac{53}{85}a^{8}+\frac{587}{85}a^{7}-\frac{52}{85}a^{6}-\frac{172}{17}a^{5}+\frac{21}{17}a^{4}+\frac{1477}{170}a^{3}-\frac{149}{170}a^{2}-\frac{201}{170}a-\frac{37}{85}$, $\frac{23}{85}a^{15}-\frac{1}{170}a^{14}-\frac{22}{17}a^{13}+\frac{7}{170}a^{12}+\frac{53}{17}a^{11}-\frac{3}{17}a^{10}-\frac{483}{85}a^{9}+\frac{53}{85}a^{8}+\frac{152}{17}a^{7}-\frac{86}{85}a^{6}-\frac{218}{17}a^{5}+\frac{21}{17}a^{4}+\frac{1047}{85}a^{3}-\frac{319}{170}a^{2}-\frac{71}{17}a+\frac{283}{170}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3309.02321892 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 3309.02321892 \cdot 1}{6\cdot\sqrt{11007531417600000000}}\cr\approx \mathstrut & 0.403777899249 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 + 9*x^12 - 16*x^10 + 24*x^8 - 34*x^6 + 29*x^4 - 6*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 4*x^14 + 9*x^12 - 16*x^10 + 24*x^8 - 34*x^6 + 29*x^4 - 6*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 4*x^14 + 9*x^12 - 16*x^10 + 24*x^8 - 34*x^6 + 29*x^4 - 6*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 4*x^14 + 9*x^12 - 16*x^10 + 24*x^8 - 34*x^6 + 29*x^4 - 6*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times D_4$ (as 16T25):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2^2 \times D_4$
Character table for $C_2^2 \times D_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-3}) \), 4.2.400.1, 4.2.14400.1, 4.2.1600.1, 4.2.3600.1, \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{-10})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{-15})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-10})\), 8.0.207360000.2, 8.4.3317760000.6, 8.4.3317760000.1, 8.0.40960000.3, 8.0.3317760000.13, 8.0.12960000.2, 8.0.207360000.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 16 siblings: 16.0.281792804290560000.1, 16.0.11007531417600000000.9, 16.0.176120502681600000000.4, 16.8.176120502681600000000.2, 16.0.176120502681600000000.5, 16.0.176120502681600000000.7, 16.0.176120502681600000000.10
Minimal sibling: 16.0.281792804290560000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.2.0.1}{2} }^{8}$ ${\href{/padicField/13.2.0.1}{2} }^{8}$ ${\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.2.0.1}{2} }^{8}$ ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.16.11$x^{8} + 2 x^{6} - 4 x^{5} + 20 x^{4} + 8 x^{3} + 44 x^{2} - 8 x + 76$$4$$2$$16$$D_4\times C_2$$[2, 2, 3]^{2}$
2.8.16.11$x^{8} + 2 x^{6} - 4 x^{5} + 20 x^{4} + 8 x^{3} + 44 x^{2} - 8 x + 76$$4$$2$$16$$D_4\times C_2$$[2, 2, 3]^{2}$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(5\) Copy content Toggle raw display 5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$