Properties

Label 16.0.104976000000000000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 5^{12}$
Root discriminant $11.58$
Ramified primes $2, 3, 5$
Class number $1$
Class group Trivial
Galois Group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1, 0, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, 1, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1)
gp: K = bnfinit(x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1, 1)

Normalized defining polynomial

\(x^{16} \) \(\mathstrut +\mathstrut x^{14} \) \(\mathstrut -\mathstrut x^{10} \) \(\mathstrut -\mathstrut x^{8} \) \(\mathstrut -\mathstrut x^{6} \) \(\mathstrut +\mathstrut x^{2} \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $16$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 8]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(104976000000000000=2^{16}\cdot 3^{8}\cdot 5^{12}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $11.58$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is Galois and abelian over $\Q$.
Conductor:  \(60=2^{2}\cdot 3\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{60}(1,·)$, $\chi_{60}(7,·)$, $\chi_{60}(11,·)$, $\chi_{60}(13,·)$, $\chi_{60}(17,·)$, $\chi_{60}(19,·)$, $\chi_{60}(23,·)$, $\chi_{60}(29,·)$, $\chi_{60}(31,·)$, $\chi_{60}(37,·)$, $\chi_{60}(41,·)$, $\chi_{60}(43,·)$, $\chi_{60}(47,·)$, $\chi_{60}(49,·)$, $\chi_{60}(53,·)$, $\chi_{60}(59,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $7$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( a \) (order $60$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( a^{12} - a^{6} + 1 \),  \( a^{12} - a^{8} \),  \( a^{14} + a^{12} \),  \( a^{14} - a^{11} - a^{4} + a \),  \( a^{14} - a^{8} + a^{7} - a^{6} + a^{2} - a + 1 \),  \( a^{15} - a^{14} - a^{12} + a^{8} + a^{6} + a^{4} - 1 \),  \( a^{14} - a^{13} + a^{12} - a^{10} + a^{9} - a^{8} + a^{2} - a + 1 \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 1560.85801125 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$C_4\times C_2^2$ (as 16T2):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
An abelian group of order 16
Conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{15}) \), \(\Q(\zeta_{12})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{15})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-5})\), \(\Q(\zeta_{5})\), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{20})^+\), 4.0.18000.1, 8.0.12960000.1, \(\Q(\zeta_{15})\), 8.0.324000000.2, \(\Q(\zeta_{20})\), 8.0.324000000.1, 8.0.324000000.3, \(\Q(\zeta_{60})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$