Properties

Label 15.5.10496055636998343.1
Degree $15$
Signature $[5, 5]$
Discriminant $-1.050\times 10^{16}$
Root discriminant \(11.70\)
Ramified primes $3,157,2377,115742009$
Class number $1$
Class group trivial
Galois group $S_{15}$ (as 15T104)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 4*x^14 + 6*x^13 - x^12 - 11*x^11 + 18*x^10 - 10*x^9 - 9*x^8 + 19*x^7 - 12*x^6 - 3*x^5 + 9*x^4 - 5*x^3 - x^2 + 3*x - 1)
 
gp: K = bnfinit(y^15 - 4*y^14 + 6*y^13 - y^12 - 11*y^11 + 18*y^10 - 10*y^9 - 9*y^8 + 19*y^7 - 12*y^6 - 3*y^5 + 9*y^4 - 5*y^3 - y^2 + 3*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - 4*x^14 + 6*x^13 - x^12 - 11*x^11 + 18*x^10 - 10*x^9 - 9*x^8 + 19*x^7 - 12*x^6 - 3*x^5 + 9*x^4 - 5*x^3 - x^2 + 3*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 4*x^14 + 6*x^13 - x^12 - 11*x^11 + 18*x^10 - 10*x^9 - 9*x^8 + 19*x^7 - 12*x^6 - 3*x^5 + 9*x^4 - 5*x^3 - x^2 + 3*x - 1)
 

\( x^{15} - 4 x^{14} + 6 x^{13} - x^{12} - 11 x^{11} + 18 x^{10} - 10 x^{9} - 9 x^{8} + 19 x^{7} - 12 x^{6} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[5, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-10496055636998343\) \(\medspace = -\,3^{5}\cdot 157\cdot 2377\cdot 115742009\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.70\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}157^{1/2}2377^{1/2}115742009^{1/2}\approx 11383362.147893872$
Ramified primes:   \(3\), \(157\), \(2377\), \(115742009\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-129580933790103}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $a^{14}-4a^{13}+6a^{12}-a^{11}-10a^{10}+15a^{9}-7a^{8}-9a^{7}+15a^{6}-7a^{5}-6a^{4}+8a^{3}-3a^{2}-2a+3$, $a^{14}-3a^{13}+2a^{12}+5a^{11}-12a^{10}+8a^{9}+5a^{8}-16a^{7}+11a^{6}+a^{5}-10a^{4}+6a^{3}-a^{2}-3a+2$, $a^{12}-4a^{11}+7a^{10}-5a^{9}-4a^{8}+12a^{7}-11a^{6}+a^{5}+5a^{4}-5a^{3}-a^{2}+2a-1$, $a^{13}-4a^{12}+6a^{11}-2a^{10}-7a^{9}+12a^{8}-8a^{7}-2a^{6}+7a^{5}-5a^{4}+a^{3}+a^{2}-a+1$, $a^{14}-4a^{13}+6a^{12}-2a^{11}-7a^{10}+11a^{9}-5a^{8}-5a^{7}+7a^{6}-a^{5}-4a^{4}+4a^{3}-a+1$, $a^{10}-3a^{9}+3a^{8}+a^{7}-6a^{6}+5a^{5}-5a^{3}+2a^{2}+a-2$, $a^{14}-3a^{13}+2a^{12}+6a^{11}-15a^{10}+11a^{9}+5a^{8}-20a^{7}+16a^{6}-2a^{5}-11a^{4}+7a^{3}-a^{2}-3a+3$, $a^{14}-3a^{13}+4a^{12}-2a^{11}-4a^{10}+10a^{9}-11a^{8}+9a^{6}-11a^{5}+a^{4}+4a^{3}-5a^{2}+2$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 99.2990074596 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{5}\cdot 99.2990074596 \cdot 1}{2\cdot\sqrt{10496055636998343}}\cr\approx \mathstrut & 0.151862718497 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - 4*x^14 + 6*x^13 - x^12 - 11*x^11 + 18*x^10 - 10*x^9 - 9*x^8 + 19*x^7 - 12*x^6 - 3*x^5 + 9*x^4 - 5*x^3 - x^2 + 3*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - 4*x^14 + 6*x^13 - x^12 - 11*x^11 + 18*x^10 - 10*x^9 - 9*x^8 + 19*x^7 - 12*x^6 - 3*x^5 + 9*x^4 - 5*x^3 - x^2 + 3*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - 4*x^14 + 6*x^13 - x^12 - 11*x^11 + 18*x^10 - 10*x^9 - 9*x^8 + 19*x^7 - 12*x^6 - 3*x^5 + 9*x^4 - 5*x^3 - x^2 + 3*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - 4*x^14 + 6*x^13 - x^12 - 11*x^11 + 18*x^10 - 10*x^9 - 9*x^8 + 19*x^7 - 12*x^6 - 3*x^5 + 9*x^4 - 5*x^3 - x^2 + 3*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{15}$ (as 15T104):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 1307674368000
The 176 conjugacy class representatives for $S_{15}$ are not computed
Character table for $S_{15}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $15$ R ${\href{/padicField/5.11.0.1}{11} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.9.0.1}{9} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ $15$ $15$ ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.7.0.1}{7} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.6.0.1}{6} }$ ${\href{/padicField/41.11.0.1}{11} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{3}$ $15$ ${\href{/padicField/53.5.0.1}{5} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.4.0.1}{4} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.5.0.1$x^{5} + 2 x + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
3.10.5.1$x^{10} + 162 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(157\) Copy content Toggle raw display 157.2.1.2$x^{2} + 314$$2$$1$$1$$C_2$$[\ ]_{2}$
157.13.0.1$x^{13} + 156 x^{2} + 9 x + 152$$1$$13$$0$$C_{13}$$[\ ]^{13}$
\(2377\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $13$$1$$13$$0$$C_{13}$$[\ ]^{13}$
\(115742009\) Copy content Toggle raw display $\Q_{115742009}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$