Properties

Label 15.5.10496055636998343.1
Degree 15
Signature $[5, 5]$
Discriminant $-\,3^{5}\cdot 157\cdot 2377\cdot 115742009$
Ramified primes $3, 157, 2377, 115742009$
Class number 1
Class group Trivial
Galois Group 15T104

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, -1, -5, 9, -3, -12, 19, -9, -10, 18, -11, -1, 6, -4, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 4*x^14 + 6*x^13 - x^12 - 11*x^11 + 18*x^10 - 10*x^9 - 9*x^8 + 19*x^7 - 12*x^6 - 3*x^5 + 9*x^4 - 5*x^3 - x^2 + 3*x - 1)
gp: K = bnfinit(x^15 - 4*x^14 + 6*x^13 - x^12 - 11*x^11 + 18*x^10 - 10*x^9 - 9*x^8 + 19*x^7 - 12*x^6 - 3*x^5 + 9*x^4 - 5*x^3 - x^2 + 3*x - 1, 1)

Normalized defining polynomial

\(x^{15} \) \(\mathstrut -\mathstrut 4 x^{14} \) \(\mathstrut +\mathstrut 6 x^{13} \) \(\mathstrut -\mathstrut x^{12} \) \(\mathstrut -\mathstrut 11 x^{11} \) \(\mathstrut +\mathstrut 18 x^{10} \) \(\mathstrut -\mathstrut 10 x^{9} \) \(\mathstrut -\mathstrut 9 x^{8} \) \(\mathstrut +\mathstrut 19 x^{7} \) \(\mathstrut -\mathstrut 12 x^{6} \) \(\mathstrut -\mathstrut 3 x^{5} \) \(\mathstrut +\mathstrut 9 x^{4} \) \(\mathstrut -\mathstrut 5 x^{3} \) \(\mathstrut -\mathstrut x^{2} \) \(\mathstrut +\mathstrut 3 x \) \(\mathstrut -\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $15$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[5, 5]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-10496055636998343=-\,3^{5}\cdot 157\cdot 2377\cdot 115742009\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Ramified primes:  $3, 157, 2377, 115742009$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order 1

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $9$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( a \),  \( a^{14} - 4 a^{13} + 6 a^{12} - a^{11} - 10 a^{10} + 15 a^{9} - 7 a^{8} - 9 a^{7} + 15 a^{6} - 7 a^{5} - 6 a^{4} + 8 a^{3} - 3 a^{2} - 2 a + 3 \),  \( a^{14} - 3 a^{13} + 2 a^{12} + 5 a^{11} - 12 a^{10} + 8 a^{9} + 5 a^{8} - 16 a^{7} + 11 a^{6} + a^{5} - 10 a^{4} + 6 a^{3} - a^{2} - 3 a + 2 \),  \( a^{12} - 4 a^{11} + 7 a^{10} - 5 a^{9} - 4 a^{8} + 12 a^{7} - 11 a^{6} + a^{5} + 5 a^{4} - 5 a^{3} - a^{2} + 2 a - 1 \),  \( a^{13} - 4 a^{12} + 6 a^{11} - 2 a^{10} - 7 a^{9} + 12 a^{8} - 8 a^{7} - 2 a^{6} + 7 a^{5} - 5 a^{4} + a^{3} + a^{2} - a + 1 \),  \( a^{14} - 4 a^{13} + 6 a^{12} - 2 a^{11} - 7 a^{10} + 11 a^{9} - 5 a^{8} - 5 a^{7} + 7 a^{6} - a^{5} - 4 a^{4} + 4 a^{3} - a + 1 \),  \( a^{10} - 3 a^{9} + 3 a^{8} + a^{7} - 6 a^{6} + 5 a^{5} - 5 a^{3} + 2 a^{2} + a - 2 \),  \( a^{14} - 3 a^{13} + 2 a^{12} + 6 a^{11} - 15 a^{10} + 11 a^{9} + 5 a^{8} - 20 a^{7} + 16 a^{6} - 2 a^{5} - 11 a^{4} + 7 a^{3} - a^{2} - 3 a + 3 \),  \( a^{14} - 3 a^{13} + 4 a^{12} - 2 a^{11} - 4 a^{10} + 10 a^{9} - 11 a^{8} + 9 a^{6} - 11 a^{5} + a^{4} + 4 a^{3} - 5 a^{2} + 2 \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 99.2990074596 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

15T104:

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A non-solvable group of order 1307674368000
Conjugacy class representatives for 15T104
Character table for 15T104

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $15$ R ${\href{/LocalNumberField/5.11.0.1}{11} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ $15$ $15$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ ${\href{/LocalNumberField/41.11.0.1}{11} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ $15$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.5.0.1$x^{5} - x + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
3.10.5.1$x^{10} - 18 x^{6} + 81 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$157$157.2.1.2$x^{2} + 785$$2$$1$$1$$C_2$$[\ ]_{2}$
157.13.0.1$x^{13} - x + 6$$1$$13$$0$$C_{13}$$[\ ]^{13}$
2377Data not computed
115742009Data not computed