# Properties

 Label 15.3.334095024862954369.1 Degree $15$ Signature $[3, 6]$ Discriminant $7^{12}\cdot 17^{6}$ Root discriminant $14.73$ Ramified primes $7, 17$ Class number $1$ Class group Trivial Galois Group $D_5\times C_3$ (as 15T3)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 21, -52, 39, -54, 88, -78, 55, -26, 16, -19, 1, -5, 3, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 2*x^14 + 3*x^13 - 5*x^12 + x^11 - 19*x^10 + 16*x^9 - 26*x^8 + 55*x^7 - 78*x^6 + 88*x^5 - 54*x^4 + 39*x^3 - 52*x^2 + 21*x - 1)
gp: K = bnfinit(x^15 - 2*x^14 + 3*x^13 - 5*x^12 + x^11 - 19*x^10 + 16*x^9 - 26*x^8 + 55*x^7 - 78*x^6 + 88*x^5 - 54*x^4 + 39*x^3 - 52*x^2 + 21*x - 1, 1)

## Normalizeddefining polynomial

$$x^{15}$$ $$\mathstrut -\mathstrut 2 x^{14}$$ $$\mathstrut +\mathstrut 3 x^{13}$$ $$\mathstrut -\mathstrut 5 x^{12}$$ $$\mathstrut +\mathstrut x^{11}$$ $$\mathstrut -\mathstrut 19 x^{10}$$ $$\mathstrut +\mathstrut 16 x^{9}$$ $$\mathstrut -\mathstrut 26 x^{8}$$ $$\mathstrut +\mathstrut 55 x^{7}$$ $$\mathstrut -\mathstrut 78 x^{6}$$ $$\mathstrut +\mathstrut 88 x^{5}$$ $$\mathstrut -\mathstrut 54 x^{4}$$ $$\mathstrut +\mathstrut 39 x^{3}$$ $$\mathstrut -\mathstrut 52 x^{2}$$ $$\mathstrut +\mathstrut 21 x$$ $$\mathstrut -\mathstrut 1$$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $15$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[3, 6]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $$334095024862954369=7^{12}\cdot 17^{6}$$ magma: Discriminant(K); sage: K.disc() gp: K.disc Root discriminant: $14.73$ magma: Abs(Discriminant(K))^(1/Degree(K)); sage: (K.disc().abs())^(1./K.degree()) gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $7, 17$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{8} - \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{8} - \frac{1}{7} a^{7} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} - \frac{2}{7} a^{4} - \frac{3}{7} a^{3} - \frac{1}{7} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{1}{7} a^{8} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{2}{7} a^{4} + \frac{3}{7} a^{3} + \frac{1}{7} a^{2} + \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{2208935141} a^{14} + \frac{156905185}{2208935141} a^{13} + \frac{140199210}{2208935141} a^{12} + \frac{36539448}{2208935141} a^{11} - \frac{71402612}{2208935141} a^{10} - \frac{109948555}{2208935141} a^{9} + \frac{231484205}{2208935141} a^{8} + \frac{51920276}{315562163} a^{7} - \frac{203771023}{2208935141} a^{6} - \frac{198868886}{2208935141} a^{5} + \frac{1005114245}{2208935141} a^{4} + \frac{374781055}{2208935141} a^{3} + \frac{397619944}{2208935141} a^{2} - \frac{1047472032}{2208935141} a - \frac{538962771}{2208935141}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $8$ magma: UnitRank(K); sage: UK.rank() gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $$678.185779099$$ magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

$C_3\times D_5$ (as 15T3):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A solvable group of order 30 The 12 conjugacy class representatives for $D_5\times C_3$ Character table for $D_5\times C_3$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Galois closure: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 $15$ $15$ $15$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ R ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ $15$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ $15$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3} 7.6.5.2x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6} 1717.3.0.1x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
17.6.3.2$x^{6} - 289 x^{2} + 14739$$2$$3$$3$$C_6$$[\ ]_{2}^{3} 17.6.3.2x^{6} - 289 x^{2} + 14739$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$