Properties

Label 15.3.31123779291971584.1
Degree $15$
Signature $[3, 6]$
Discriminant $3.112\times 10^{16}$
Root discriminant \(12.58\)
Ramified primes $2,587$
Class number $1$
Class group trivial
Galois group $S_6$ (as 15T28)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 + x^13 - x^12 - 5*x^11 - 4*x^10 - 5*x^9 - x^8 + 4*x^7 + 2*x^6 - 2*x^5 - 4*x^4 - 5*x^3 - 4*x^2 - 3*x - 1)
 
gp: K = bnfinit(y^15 + y^13 - y^12 - 5*y^11 - 4*y^10 - 5*y^9 - y^8 + 4*y^7 + 2*y^6 - 2*y^5 - 4*y^4 - 5*y^3 - 4*y^2 - 3*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 + x^13 - x^12 - 5*x^11 - 4*x^10 - 5*x^9 - x^8 + 4*x^7 + 2*x^6 - 2*x^5 - 4*x^4 - 5*x^3 - 4*x^2 - 3*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 + x^13 - x^12 - 5*x^11 - 4*x^10 - 5*x^9 - x^8 + 4*x^7 + 2*x^6 - 2*x^5 - 4*x^4 - 5*x^3 - 4*x^2 - 3*x - 1)
 

\( x^{15} + x^{13} - x^{12} - 5 x^{11} - 4 x^{10} - 5 x^{9} - x^{8} + 4 x^{7} + 2 x^{6} - 2 x^{5} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(31123779291971584\) \(\medspace = 2^{18}\cdot 587^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.58\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{7/4}587^{1/2}\approx 81.49323216626063$
Ramified primes:   \(2\), \(587\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{12}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3501}a^{14}+\frac{436}{3501}a^{13}+\frac{1043}{3501}a^{12}-\frac{383}{3501}a^{11}+\frac{1055}{3501}a^{10}+\frac{1345}{3501}a^{9}+\frac{1748}{3501}a^{8}-\frac{1091}{3501}a^{7}+\frac{464}{3501}a^{6}-\frac{752}{3501}a^{5}+\frac{1220}{3501}a^{4}-\frac{236}{3501}a^{3}-\frac{1372}{3501}a^{2}+\frac{475}{3501}a+\frac{538}{3501}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $\frac{431}{1167}a^{14}-\frac{749}{1167}a^{13}+\frac{1016}{1167}a^{12}-\frac{1304}{1167}a^{11}-\frac{814}{1167}a^{10}+\frac{1252}{1167}a^{9}-\frac{2050}{1167}a^{8}+\frac{1636}{1167}a^{7}+\frac{38}{1167}a^{6}-\frac{1631}{1167}a^{5}+\frac{281}{1167}a^{4}+\frac{1369}{1167}a^{3}-\frac{1219}{1167}a^{2}-\frac{278}{1167}a-\frac{248}{389}$, $\frac{248}{389}a^{14}-\frac{431}{1167}a^{13}+\frac{1493}{1167}a^{12}-\frac{1760}{1167}a^{11}-\frac{2416}{1167}a^{10}-\frac{2162}{1167}a^{9}-\frac{4972}{1167}a^{8}+\frac{1306}{1167}a^{7}+\frac{1340}{1167}a^{6}+\frac{1450}{1167}a^{5}+\frac{143}{1167}a^{4}-\frac{3257}{1167}a^{3}-\frac{3922}{1167}a^{2}-\frac{2924}{1167}a-\frac{1954}{1167}$, $\frac{1496}{3501}a^{14}-\frac{97}{3501}a^{13}+\frac{49}{3501}a^{12}+\frac{29}{3501}a^{11}-\frac{10007}{3501}a^{10}-\frac{2122}{3501}a^{9}-\frac{2573}{3501}a^{8}-\frac{1837}{3501}a^{7}+\frac{12616}{3501}a^{6}-\frac{2338}{3501}a^{5}-\frac{4736}{3501}a^{4}-\frac{4123}{3501}a^{3}-\frac{3260}{3501}a^{2}-\frac{1270}{3501}a-\frac{2716}{3501}$, $\frac{1054}{3501}a^{14}-\frac{254}{3501}a^{13}+\frac{1175}{3501}a^{12}-\frac{2234}{3501}a^{11}-\frac{3682}{3501}a^{10}-\frac{4943}{3501}a^{9}-\frac{1468}{3501}a^{8}+\frac{748}{3501}a^{7}+\frac{3584}{3501}a^{6}+\frac{4453}{3501}a^{5}-\frac{8323}{3501}a^{4}-\frac{1340}{3501}a^{3}-\frac{2509}{3501}a^{2}-\frac{1160}{3501}a-\frac{2444}{3501}$, $\frac{322}{3501}a^{14}+\frac{1519}{3501}a^{13}-\frac{1417}{3501}a^{12}+\frac{376}{3501}a^{11}-\frac{4555}{3501}a^{10}-\frac{6869}{3501}a^{9}+\frac{1529}{3501}a^{8}+\frac{3466}{3501}a^{7}+\frac{8201}{3501}a^{6}+\frac{7594}{3501}a^{5}-\frac{7441}{3501}a^{4}-\frac{11807}{3501}a^{3}-\frac{1825}{3501}a^{2}+\frac{3574}{3501}a+\frac{4021}{3501}$, $\frac{4682}{3501}a^{14}-\frac{898}{3501}a^{13}+\frac{4099}{3501}a^{12}-\frac{5362}{3501}a^{11}-\frac{23741}{3501}a^{10}-\frac{12679}{3501}a^{9}-\frac{17540}{3501}a^{8}+\frac{2231}{3501}a^{7}+\frac{24001}{3501}a^{6}+\frac{3476}{3501}a^{5}-\frac{14429}{3501}a^{4}-\frac{20809}{3501}a^{3}-\frac{19208}{3501}a^{2}-\frac{10855}{3501}a-\frac{4138}{3501}$, $\frac{218}{3501}a^{14}-\frac{646}{3501}a^{13}+\frac{976}{3501}a^{12}-\frac{637}{3501}a^{11}+\frac{91}{3501}a^{10}+\frac{1460}{3501}a^{9}-\frac{2879}{3501}a^{8}-\frac{937}{3501}a^{7}-\frac{2711}{3501}a^{6}-\frac{556}{3501}a^{5}+\frac{4552}{3501}a^{4}+\frac{3401}{3501}a^{3}+\frac{3157}{3501}a^{2}-\frac{2647}{3501}a-\frac{4084}{3501}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 152.23669177 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{6}\cdot 152.23669177 \cdot 1}{2\cdot\sqrt{31123779291971584}}\cr\approx \mathstrut & 0.21237939329 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 + x^13 - x^12 - 5*x^11 - 4*x^10 - 5*x^9 - x^8 + 4*x^7 + 2*x^6 - 2*x^5 - 4*x^4 - 5*x^3 - 4*x^2 - 3*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 + x^13 - x^12 - 5*x^11 - 4*x^10 - 5*x^9 - x^8 + 4*x^7 + 2*x^6 - 2*x^5 - 4*x^4 - 5*x^3 - 4*x^2 - 3*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 + x^13 - x^12 - 5*x^11 - 4*x^10 - 5*x^9 - x^8 + 4*x^7 + 2*x^6 - 2*x^5 - 4*x^4 - 5*x^3 - 4*x^2 - 3*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 + x^13 - x^12 - 5*x^11 - 4*x^10 - 5*x^9 - x^8 + 4*x^7 + 2*x^6 - 2*x^5 - 4*x^4 - 5*x^3 - 4*x^2 - 3*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_6$ (as 15T28):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for $S_6$
Character table for $S_6$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 6 siblings: 6.2.37568.1, 6.2.51779072768.2
Degree 10 sibling: 10.2.828465164288.1
Degree 12 siblings: deg 12, deg 12
Degree 15 sibling: deg 15
Degree 20 siblings: deg 20, 20.4.2745418113754971322187776.1, deg 20
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: 6.2.37568.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }$ ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }$ ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.5.0.1}{5} }^{3}$ ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }$ ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.5.0.1}{5} }^{3}$ ${\href{/padicField/23.5.0.1}{5} }^{3}$ ${\href{/padicField/29.5.0.1}{5} }^{3}$ ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.5.0.1}{5} }^{3}$ ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.0.1$x^{3} + x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.18.52$x^{12} + 10 x^{10} + 18 x^{8} - 8 x^{7} + 104 x^{6} + 48 x^{5} + 204 x^{4} + 216 x^{2} + 216$$4$$3$$18$$A_4\times C_2$$[2, 2, 2]^{3}$
\(587\) Copy content Toggle raw display $\Q_{587}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $8$$2$$4$$4$