# Properties

 Label 15.3.2164169497031757.1 Degree 15 Signature $[3, 6]$ Discriminant $3^{3}\cdot 69593\cdot 1151759887$ Ramified primes $3, 69593, 1151759887$ Class number 1 Class group Trivial Galois Group 15T104

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: K<a> := NumberField(PolynomialRing(Rationals())![1, -4, 9, -21, 39, -57, 69, -72, 55, -14, -32, 54, -45, 23, -7, 1]);
sage: K = NumberField(x^15 - 7*x^14 + 23*x^13 - 45*x^12 + 54*x^11 - 32*x^10 - 14*x^9 + 55*x^8 - 72*x^7 + 69*x^6 - 57*x^5 + 39*x^4 - 21*x^3 + 9*x^2 - 4*x + 1,"a")
gp: K = bnfinit(x^15 - 7*x^14 + 23*x^13 - 45*x^12 + 54*x^11 - 32*x^10 - 14*x^9 + 55*x^8 - 72*x^7 + 69*x^6 - 57*x^5 + 39*x^4 - 21*x^3 + 9*x^2 - 4*x + 1, 1)

## Normalizeddefining polynomial

$x^{15}$ $\mathstrut -\mathstrut 7 x^{14}$ $\mathstrut +\mathstrut 23 x^{13}$ $\mathstrut -\mathstrut 45 x^{12}$ $\mathstrut +\mathstrut 54 x^{11}$ $\mathstrut -\mathstrut 32 x^{10}$ $\mathstrut -\mathstrut 14 x^{9}$ $\mathstrut +\mathstrut 55 x^{8}$ $\mathstrut -\mathstrut 72 x^{7}$ $\mathstrut +\mathstrut 69 x^{6}$ $\mathstrut -\mathstrut 57 x^{5}$ $\mathstrut +\mathstrut 39 x^{4}$ $\mathstrut -\mathstrut 21 x^{3}$ $\mathstrut +\mathstrut 9 x^{2}$ $\mathstrut -\mathstrut 4 x$ $\mathstrut +\mathstrut 1$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $15$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[3, 6]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $2164169497031757=3^{3}\cdot 69593\cdot 1151759887$ magma: Discriminant(K); sage: K.disc() gp: K.disc Ramified primes: $3, 69593, 1151759887$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$.

## Integral basis (with respect to field generator $a$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial Abelian group, order 1

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $8$ magma: UnitRank(K); sage: UK.rank() gp: #K.fu Torsion generator: $-1$ magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental units: $a$,  $a^{13} - 5 a^{12} + 12 a^{11} - 18 a^{10} + 18 a^{9} - 10 a^{8} - 6 a^{7} + 24 a^{6} - 35 a^{5} + 31 a^{4} - 20 a^{3} + 10 a^{2} - 6 a + 1$,  $3 a^{14} - 18 a^{13} + 50 a^{12} - 80 a^{11} + 70 a^{10} - 8 a^{9} - 68 a^{8} + 107 a^{7} - 103 a^{6} + 80 a^{5} - 56 a^{4} + 30 a^{3} - 13 a^{2} + 4 a - 2$,  $a^{14} - 7 a^{13} + 22 a^{12} - 40 a^{11} + 43 a^{10} - 20 a^{9} - 16 a^{8} + 43 a^{7} - 55 a^{6} + 58 a^{5} - 51 a^{4} + 34 a^{3} - 17 a^{2} + 8 a - 3$,  $a^{14} - 5 a^{13} + 11 a^{12} - 12 a^{11} + 3 a^{10} + 8 a^{9} - 10 a^{8} + 5 a^{7} - 6 a^{6} + 12 a^{5} - 14 a^{4} + 8 a^{3} - 5 a^{2} + 3 a - 2$,  $a^{13} - 7 a^{12} + 21 a^{11} - 34 a^{10} + 26 a^{9} + 8 a^{8} - 42 a^{7} + 48 a^{6} - 31 a^{5} + 17 a^{4} - 11 a^{3} + 5 a^{2} + a$,  $a^{14} - 5 a^{13} + 11 a^{12} - 11 a^{11} - 3 a^{10} + 24 a^{9} - 33 a^{8} + 20 a^{7} + a^{6} - 15 a^{5} + 17 a^{4} - 15 a^{3} + 9 a^{2} - 5 a + 1$,  $a^{14} - 5 a^{13} + 12 a^{12} - 18 a^{11} + 18 a^{10} - 11 a^{9} - 2 a^{8} + 18 a^{7} - 32 a^{6} + 35 a^{5} - 28 a^{4} + 17 a^{3} - 10 a^{2} + 3 a - 1$ magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $29.6657425505$ magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A non-solvable group of order 1307674368000 Conjugacy class representatives for 15T104 Character table for 15T104

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ${\href{/LocalNumberField/2.9.0.1}{9} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ R ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ ${\href{/LocalNumberField/7.13.0.1}{13} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.11.0.1}{11} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ ${\href{/LocalNumberField/13.13.0.1}{13} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3} 3.9.0.1x^{9} - x^{3} + x^{2} + 1$$1$$9$$0$$C_9$$[\ ]^{9}$
69593Data not computed
1151759887Data not computed