Properties

Label 15.1.6401597515801839.1
Degree $15$
Signature $[1, 7]$
Discriminant $-6.402\times 10^{15}$
Root discriminant \(11.32\)
Ramified primes $3,13,23$
Class number $1$
Class group trivial
Galois group $S_5 \times S_3$ (as 15T29)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - x^13 + 2*x^12 - 4*x^11 - x^10 + 3*x^9 + 3*x^8 + 12*x^7 - 2*x^6 - 14*x^5 + 7*x^4 + 11*x^3 - 6*x^2 + 1)
 
gp: K = bnfinit(y^15 - y^14 - y^13 + 2*y^12 - 4*y^11 - y^10 + 3*y^9 + 3*y^8 + 12*y^7 - 2*y^6 - 14*y^5 + 7*y^4 + 11*y^3 - 6*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - x^14 - x^13 + 2*x^12 - 4*x^11 - x^10 + 3*x^9 + 3*x^8 + 12*x^7 - 2*x^6 - 14*x^5 + 7*x^4 + 11*x^3 - 6*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - x^14 - x^13 + 2*x^12 - 4*x^11 - x^10 + 3*x^9 + 3*x^8 + 12*x^7 - 2*x^6 - 14*x^5 + 7*x^4 + 11*x^3 - 6*x^2 + 1)
 

\( x^{15} - x^{14} - x^{13} + 2 x^{12} - 4 x^{11} - x^{10} + 3 x^{9} + 3 x^{8} + 12 x^{7} - 2 x^{6} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-6401597515801839\) \(\medspace = -\,3^{9}\cdot 13^{3}\cdot 23^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.32\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{7/6}13^{1/2}23^{1/2}\approx 62.298423685493326$
Ramified primes:   \(3\), \(13\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-39}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{23}a^{13}-\frac{7}{23}a^{11}-\frac{5}{23}a^{10}+\frac{10}{23}a^{9}-\frac{7}{23}a^{8}+\frac{5}{23}a^{7}+\frac{4}{23}a^{6}+\frac{9}{23}a^{5}+\frac{6}{23}a^{4}+\frac{7}{23}a^{3}+\frac{1}{23}a^{2}-\frac{7}{23}a+\frac{4}{23}$, $\frac{1}{1917533}a^{14}+\frac{29448}{1917533}a^{13}-\frac{761330}{1917533}a^{12}-\frac{611332}{1917533}a^{11}-\frac{232445}{1917533}a^{10}+\frac{820230}{1917533}a^{9}+\frac{707153}{1917533}a^{8}-\frac{293390}{1917533}a^{7}-\frac{138626}{1917533}a^{6}+\frac{781020}{1917533}a^{5}-\frac{300256}{1917533}a^{4}-\frac{327532}{1917533}a^{3}+\frac{534843}{1917533}a^{2}+\frac{642407}{1917533}a+\frac{946988}{1917533}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{360497}{1917533}a^{14}+\frac{286226}{1917533}a^{13}-\frac{682720}{1917533}a^{12}-\frac{117120}{1917533}a^{11}-\frac{616888}{1917533}a^{10}-\frac{2471842}{1917533}a^{9}-\frac{639983}{1917533}a^{8}+\frac{2154207}{1917533}a^{7}+\frac{7491088}{1917533}a^{6}+\frac{8248471}{1917533}a^{5}-\frac{1484900}{1917533}a^{4}-\frac{5293656}{1917533}a^{3}+\frac{3104612}{1917533}a^{2}+\frac{4585530}{1917533}a-\frac{404054}{1917533}$, $\frac{329265}{1917533}a^{14}-\frac{101693}{1917533}a^{13}-\frac{233360}{1917533}a^{12}+\frac{44452}{1917533}a^{11}-\frac{1008070}{1917533}a^{10}-\frac{987354}{1917533}a^{9}-\frac{380756}{1917533}a^{8}+\frac{1753964}{1917533}a^{7}+\frac{4851047}{1917533}a^{6}+\frac{4367316}{1917533}a^{5}-\frac{1376217}{1917533}a^{4}-\frac{1934350}{1917533}a^{3}+\frac{1434176}{1917533}a^{2}+\frac{159448}{1917533}a+\frac{713029}{1917533}$, $\frac{37196}{1917533}a^{14}+\frac{353094}{1917533}a^{13}-\frac{303336}{1917533}a^{12}-\frac{415161}{1917533}a^{11}+\frac{548932}{1917533}a^{10}-\frac{1426193}{1917533}a^{9}-\frac{871109}{1917533}a^{8}+\frac{1246541}{1917533}a^{7}+\frac{1497590}{1917533}a^{6}+\frac{5197230}{1917533}a^{5}+\frac{35101}{83371}a^{4}-\frac{5211786}{1917533}a^{3}+\frac{3367048}{1917533}a^{2}+\frac{3093189}{1917533}a-\frac{1249046}{1917533}$, $\frac{197086}{1917533}a^{14}+\frac{166476}{1917533}a^{13}-\frac{527130}{1917533}a^{12}-\frac{127337}{1917533}a^{11}+\frac{209004}{1917533}a^{10}-\frac{1936527}{1917533}a^{9}+\frac{322878}{1917533}a^{8}+\frac{1980237}{1917533}a^{7}+\frac{2767704}{1917533}a^{6}+\frac{4899196}{1917533}a^{5}-\frac{4353734}{1917533}a^{4}-\frac{4476132}{1917533}a^{3}+\frac{5946360}{1917533}a^{2}+\frac{2892370}{1917533}a-\frac{1996231}{1917533}$, $\frac{159678}{1917533}a^{14}-\frac{260140}{1917533}a^{13}+\frac{105394}{1917533}a^{12}+\frac{415045}{1917533}a^{11}-\frac{1084188}{1917533}a^{10}+\frac{18691}{83371}a^{9}-\frac{155327}{1917533}a^{8}-\frac{179471}{1917533}a^{7}+\frac{1645718}{1917533}a^{6}-\frac{1049807}{1917533}a^{5}+\frac{1550822}{1917533}a^{4}+\frac{4059235}{1917533}a^{3}-\frac{1091168}{1917533}a^{2}-\frac{3164245}{1917533}a+\frac{1499744}{1917533}$, $\frac{69054}{1917533}a^{14}-\frac{333353}{1917533}a^{13}+\frac{120441}{1917533}a^{12}+\frac{652890}{1917533}a^{11}-\frac{1005594}{1917533}a^{10}+\frac{989747}{1917533}a^{9}+\frac{40509}{83371}a^{8}-\frac{1517141}{1917533}a^{7}+\frac{395271}{1917533}a^{6}-\frac{3563031}{1917533}a^{5}-\frac{1344286}{1917533}a^{4}+\frac{6493316}{1917533}a^{3}+\frac{112377}{1917533}a^{2}-\frac{4104220}{1917533}a+\frac{431792}{1917533}$, $\frac{487045}{1917533}a^{14}-\frac{62083}{1917533}a^{13}-\frac{943508}{1917533}a^{12}+\frac{410055}{1917533}a^{11}-\frac{44659}{83371}a^{10}-\frac{2151367}{1917533}a^{9}+\frac{1228043}{1917533}a^{8}+\frac{3344595}{1917533}a^{7}+\frac{7323747}{1917533}a^{6}+\frac{4611865}{1917533}a^{5}-\frac{9367957}{1917533}a^{4}-\frac{4920090}{1917533}a^{3}+\frac{5922147}{1917533}a^{2}+\frac{2760191}{1917533}a-\frac{1860241}{1917533}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 46.8775403574 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{7}\cdot 46.8775403574 \cdot 1}{2\cdot\sqrt{6401597515801839}}\cr\approx \mathstrut & 0.226506000756 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - x^13 + 2*x^12 - 4*x^11 - x^10 + 3*x^9 + 3*x^8 + 12*x^7 - 2*x^6 - 14*x^5 + 7*x^4 + 11*x^3 - 6*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - x^14 - x^13 + 2*x^12 - 4*x^11 - x^10 + 3*x^9 + 3*x^8 + 12*x^7 - 2*x^6 - 14*x^5 + 7*x^4 + 11*x^3 - 6*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - x^14 - x^13 + 2*x^12 - 4*x^11 - x^10 + 3*x^9 + 3*x^8 + 12*x^7 - 2*x^6 - 14*x^5 + 7*x^4 + 11*x^3 - 6*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - x^14 - x^13 + 2*x^12 - 4*x^11 - x^10 + 3*x^9 + 3*x^8 + 12*x^7 - 2*x^6 - 14*x^5 + 7*x^4 + 11*x^3 - 6*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times S_5$ (as 15T29):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 720
The 21 conjugacy class representatives for $S_5 \times S_3$
Character table for $S_5 \times S_3$

Intermediate fields

3.1.23.1, 5.1.8073.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $15$ R ${\href{/padicField/5.4.0.1}{4} }^{3}{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }$ ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ R ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }$ ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }$ R ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{3}$ ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.5.0.1}{5} }$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.3.0.1}{3} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.6.0.1$x^{6} + 2 x^{4} + x^{2} + 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
3.9.9.1$x^{9} + 90 x^{7} - 207 x^{6} + 540 x^{5} + 324 x^{4} + 243 x^{3} + 324 x^{2} + 162 x + 27$$3$$3$$9$$S_3\times C_3$$[3/2]_{2}^{3}$
\(13\) Copy content Toggle raw display 13.3.0.1$x^{3} + 2 x + 11$$1$$3$$0$$C_3$$[\ ]^{3}$
13.3.0.1$x^{3} + 2 x + 11$$1$$3$$0$$C_3$$[\ ]^{3}$
13.3.0.1$x^{3} + 2 x + 11$$1$$3$$0$$C_3$$[\ ]^{3}$
13.6.3.1$x^{6} + 390 x^{5} + 50743 x^{4} + 2208202 x^{3} + 765301 x^{2} + 5017316 x + 24555184$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(23\) Copy content Toggle raw display 23.2.1.1$x^{2} + 115$$2$$1$$1$$C_2$$[\ ]_{2}$
23.3.0.1$x^{3} + 2 x + 18$$1$$3$$0$$C_3$$[\ ]^{3}$
23.4.2.1$x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.6.3.2$x^{6} + 73 x^{4} + 36 x^{3} + 1591 x^{2} - 2412 x + 10467$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$