Properties

Label 14.2.55059380046329.1
Degree $14$
Signature $[2, 6]$
Discriminant $5.506\times 10^{13}$
Root discriminant \(9.58\)
Ramified primes $277,569,1123$
Class number $1$
Class group trivial
Galois group $C_2^7.S_7$ (as 14T57)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 4*x^13 + 6*x^12 - x^11 - 10*x^10 + 18*x^9 - 18*x^8 + 15*x^7 - 13*x^6 + 11*x^5 - 8*x^4 + 6*x^3 - 3*x^2 + 1)
 
gp: K = bnfinit(y^14 - 4*y^13 + 6*y^12 - y^11 - 10*y^10 + 18*y^9 - 18*y^8 + 15*y^7 - 13*y^6 + 11*y^5 - 8*y^4 + 6*y^3 - 3*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 4*x^13 + 6*x^12 - x^11 - 10*x^10 + 18*x^9 - 18*x^8 + 15*x^7 - 13*x^6 + 11*x^5 - 8*x^4 + 6*x^3 - 3*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 4*x^13 + 6*x^12 - x^11 - 10*x^10 + 18*x^9 - 18*x^8 + 15*x^7 - 13*x^6 + 11*x^5 - 8*x^4 + 6*x^3 - 3*x^2 + 1)
 

\( x^{14} - 4 x^{13} + 6 x^{12} - x^{11} - 10 x^{10} + 18 x^{9} - 18 x^{8} + 15 x^{7} - 13 x^{6} + 11 x^{5} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(55059380046329\) \(\medspace = 277^{2}\cdot 569\cdot 1123^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(9.58\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $277^{1/2}569^{1/2}1123^{1/2}\approx 13304.112108667756$
Ramified primes:   \(277\), \(569\), \(1123\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{569}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{43}a^{13}+\frac{13}{43}a^{12}+\frac{12}{43}a^{11}-\frac{12}{43}a^{10}+\frac{1}{43}a^{9}-\frac{8}{43}a^{8}+\frac{18}{43}a^{7}+\frac{20}{43}a^{6}-\frac{17}{43}a^{5}-\frac{20}{43}a^{4}-\frac{4}{43}a^{3}-\frac{19}{43}a^{2}+\frac{18}{43}a+\frac{5}{43}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{60}{43}a^{13}-\frac{166}{43}a^{12}+\frac{118}{43}a^{11}+\frac{183}{43}a^{10}-\frac{456}{43}a^{9}+\frac{466}{43}a^{8}-\frac{296}{43}a^{7}+\frac{211}{43}a^{6}-\frac{160}{43}a^{5}+\frac{133}{43}a^{4}-\frac{111}{43}a^{3}+\frac{107}{43}a^{2}+\frac{48}{43}a-\frac{44}{43}$, $\frac{40}{43}a^{13}-\frac{82}{43}a^{12}+\frac{7}{43}a^{11}+\frac{165}{43}a^{10}-\frac{218}{43}a^{9}+\frac{110}{43}a^{8}-\frac{11}{43}a^{7}+\frac{26}{43}a^{6}-\frac{35}{43}a^{5}+\frac{17}{43}a^{4}+\frac{12}{43}a^{3}+\frac{14}{43}a^{2}+\frac{32}{43}a-\frac{15}{43}$, $\frac{27}{43}a^{13}-\frac{79}{43}a^{12}+\frac{66}{43}a^{11}+\frac{63}{43}a^{10}-\frac{188}{43}a^{9}+\frac{214}{43}a^{8}-\frac{202}{43}a^{7}+\frac{196}{43}a^{6}-\frac{158}{43}a^{5}+\frac{148}{43}a^{4}-\frac{151}{43}a^{3}+\frac{132}{43}a^{2}-\frac{30}{43}a+\frac{6}{43}$, $\frac{14}{43}a^{13}-\frac{33}{43}a^{12}-\frac{4}{43}a^{11}+\frac{90}{43}a^{10}-\frac{115}{43}a^{9}+\frac{17}{43}a^{8}+\frac{80}{43}a^{7}-\frac{64}{43}a^{6}+\frac{20}{43}a^{5}-\frac{65}{43}a^{4}+\frac{73}{43}a^{3}-\frac{51}{43}a^{2}+\frac{37}{43}a-\frac{16}{43}$, $\frac{37}{43}a^{13}-\frac{78}{43}a^{12}+\frac{14}{43}a^{11}+\frac{158}{43}a^{10}-\frac{221}{43}a^{9}+\frac{134}{43}a^{8}-\frac{22}{43}a^{7}+\frac{9}{43}a^{6}+\frac{16}{43}a^{5}-\frac{52}{43}a^{4}+\frac{67}{43}a^{3}-\frac{15}{43}a^{2}+\frac{64}{43}a-\frac{30}{43}$, $a$, $\frac{28}{43}a^{13}-\frac{23}{43}a^{12}-\frac{51}{43}a^{11}+\frac{94}{43}a^{10}-\frac{15}{43}a^{9}-\frac{52}{43}a^{8}+\frac{31}{43}a^{7}+\frac{44}{43}a^{6}-\frac{3}{43}a^{5}-\frac{1}{43}a^{4}-\frac{26}{43}a^{3}+\frac{27}{43}a^{2}+\frac{74}{43}a+\frac{54}{43}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9.77909350979 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 9.77909350979 \cdot 1}{2\cdot\sqrt{55059380046329}}\cr\approx \mathstrut & 0.162178076894 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 - 4*x^13 + 6*x^12 - x^11 - 10*x^10 + 18*x^9 - 18*x^8 + 15*x^7 - 13*x^6 + 11*x^5 - 8*x^4 + 6*x^3 - 3*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 - 4*x^13 + 6*x^12 - x^11 - 10*x^10 + 18*x^9 - 18*x^8 + 15*x^7 - 13*x^6 + 11*x^5 - 8*x^4 + 6*x^3 - 3*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^14 - 4*x^13 + 6*x^12 - x^11 - 10*x^10 + 18*x^9 - 18*x^8 + 15*x^7 - 13*x^6 + 11*x^5 - 8*x^4 + 6*x^3 - 3*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 4*x^13 + 6*x^12 - x^11 - 10*x^10 + 18*x^9 - 18*x^8 + 15*x^7 - 13*x^6 + 11*x^5 - 8*x^4 + 6*x^3 - 3*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^7.S_7$ (as 14T57):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 645120
The 110 conjugacy class representatives for $C_2^7.S_7$ are not computed
Character table for $C_2^7.S_7$ is not computed

Intermediate fields

7.1.311071.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 14 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.7.0.1}{7} }^{2}$ ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ ${\href{/padicField/5.7.0.1}{7} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}$ ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.14.0.1}{14} }$ ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.4.0.1}{4} }$ ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}$ ${\href{/padicField/37.14.0.1}{14} }$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(277\) Copy content Toggle raw display $\Q_{277}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{277}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $4$$2$$2$$2$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
\(569\) Copy content Toggle raw display $\Q_{569}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{569}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
\(1123\) Copy content Toggle raw display $\Q_{1123}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1123}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1123}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1123}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $4$$2$$2$$2$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$