Normalized defining polynomial
\( x^{14} - 2 x^{13} + 13 x^{12} - 52 x^{11} + 104 x^{10} - 364 x^{9} + 806 x^{8} - 1300 x^{7} + 2990 x^{6} - 4212 x^{5} + 4680 x^{4} - 7020 x^{3} + 5265 x^{2} - 1802 x + 445 \)
Invariants
Degree: | $14$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(20325604337285010030592\)\(\medspace = 2^{26}\cdot 13^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $39.21$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 13$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{40} a^{8} - \frac{3}{40} a^{6} + \frac{1}{20} a^{5} + \frac{1}{5} a^{4} - \frac{1}{20} a^{3} - \frac{19}{40} a^{2} + \frac{1}{10} a - \frac{3}{8}$, $\frac{1}{40} a^{9} + \frac{1}{20} a^{7} - \frac{3}{40} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{9}{40} a^{3} - \frac{2}{5} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{80} a^{10} - \frac{1}{80} a^{9} - \frac{1}{16} a^{7} - \frac{3}{80} a^{6} - \frac{1}{20} a^{5} - \frac{13}{80} a^{4} + \frac{17}{80} a^{3} - \frac{9}{20} a^{2} - \frac{23}{80} a + \frac{7}{16}$, $\frac{1}{160} a^{11} + \frac{1}{160} a^{9} - \frac{1}{160} a^{8} + \frac{3}{80} a^{7} - \frac{3}{32} a^{6} + \frac{7}{160} a^{5} + \frac{1}{5} a^{4} - \frac{5}{32} a^{3} - \frac{47}{160} a^{2} - \frac{11}{80} a - \frac{13}{32}$, $\frac{1}{160} a^{12} - \frac{1}{160} a^{10} + \frac{1}{160} a^{9} - \frac{1}{80} a^{8} - \frac{1}{32} a^{7} - \frac{3}{160} a^{6} + \frac{3}{20} a^{5} + \frac{17}{160} a^{4} + \frac{3}{32} a^{3} + \frac{21}{80} a^{2} + \frac{29}{160} a + \frac{1}{16}$, $\frac{1}{160} a^{13} - \frac{1}{160} a^{10} + \frac{1}{160} a^{9} - \frac{1}{80} a^{8} - \frac{7}{160} a^{7} - \frac{17}{160} a^{6} - \frac{1}{4} a^{5} - \frac{3}{32} a^{4} + \frac{3}{32} a^{3} - \frac{11}{80} a^{2} - \frac{5}{16} a - \frac{11}{32}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1523520.8954 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$\PGL(2,13)$ (as 14T39):
A non-solvable group of order 2184 |
The 15 conjugacy class representatives for $\PGL(2,13)$ |
Character table for $\PGL(2,13)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.6.10.3 | $x^{6} + 2 x^{5} + 4 x + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
2.8.16.8 | $x^{8} + 8 x^{5} + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
$13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
13.13.13.5 | $x^{13} + 130 x + 13$ | $13$ | $1$ | $13$ | $F_{13}$ | $[13/12]_{12}$ |
Additional information
This field is unusual in that it has non-solvable Galois group and is ramified at only two small primes.