Properties

Label 14.0.318497840669359.1
Degree $14$
Signature $[0, 7]$
Discriminant $-3.185\times 10^{14}$
Root discriminant \(10.86\)
Ramified primes $13,79,109$
Class number $1$
Class group trivial
Galois group $C_2^7.\GL(3,2)$ (as 14T51)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 4*x^13 + 8*x^12 - 10*x^11 + 15*x^10 - 28*x^9 + 42*x^8 - 41*x^7 + 32*x^6 - 31*x^5 + 37*x^4 - 35*x^3 + 21*x^2 - 7*x + 1)
 
gp: K = bnfinit(y^14 - 4*y^13 + 8*y^12 - 10*y^11 + 15*y^10 - 28*y^9 + 42*y^8 - 41*y^7 + 32*y^6 - 31*y^5 + 37*y^4 - 35*y^3 + 21*y^2 - 7*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 4*x^13 + 8*x^12 - 10*x^11 + 15*x^10 - 28*x^9 + 42*x^8 - 41*x^7 + 32*x^6 - 31*x^5 + 37*x^4 - 35*x^3 + 21*x^2 - 7*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 4*x^13 + 8*x^12 - 10*x^11 + 15*x^10 - 28*x^9 + 42*x^8 - 41*x^7 + 32*x^6 - 31*x^5 + 37*x^4 - 35*x^3 + 21*x^2 - 7*x + 1)
 

\( x^{14} - 4 x^{13} + 8 x^{12} - 10 x^{11} + 15 x^{10} - 28 x^{9} + 42 x^{8} - 41 x^{7} + 32 x^{6} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-318497840669359\) \(\medspace = -\,13^{4}\cdot 79\cdot 109^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(10.86\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{1/2}79^{1/2}109^{1/2}\approx 334.57883973736296$
Ramified primes:   \(13\), \(79\), \(109\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-79}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7}a^{13}-\frac{2}{7}a^{12}-\frac{3}{7}a^{11}-\frac{2}{7}a^{10}-\frac{3}{7}a^{9}+\frac{1}{7}a^{8}+\frac{2}{7}a^{7}-\frac{2}{7}a^{6}-\frac{3}{7}a^{4}+\frac{3}{7}a^{3}-\frac{1}{7}a^{2}-\frac{2}{7}a+\frac{3}{7}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $\frac{83}{7}a^{13}-\frac{229}{7}a^{12}+\frac{339}{7}a^{11}-\frac{292}{7}a^{10}+\frac{703}{7}a^{9}-\frac{1289}{7}a^{8}+\frac{1524}{7}a^{7}-\frac{838}{7}a^{6}+113a^{5}-\frac{1089}{7}a^{4}+\frac{1278}{7}a^{3}-\frac{734}{7}a^{2}+\frac{128}{7}a+\frac{25}{7}$, $a^{13}-3a^{12}+5a^{11}-5a^{10}+10a^{9}-18a^{8}+24a^{7}-17a^{6}+15a^{5}-16a^{4}+21a^{3}-14a^{2}+7a-1$, $14a^{13}-43a^{12}+69a^{11}-67a^{10}+134a^{9}-255a^{8}+324a^{7}-222a^{6}+179a^{5}-229a^{4}+273a^{3}-193a^{2}+63a-5$, $\frac{59}{7}a^{13}-\frac{174}{7}a^{12}+\frac{271}{7}a^{11}-\frac{251}{7}a^{10}+\frac{537}{7}a^{9}-\frac{1012}{7}a^{8}+\frac{1252}{7}a^{7}-\frac{790}{7}a^{6}+96a^{5}-\frac{891}{7}a^{4}+\frac{1052}{7}a^{3}-\frac{689}{7}a^{2}+\frac{197}{7}a-\frac{5}{7}$, $\frac{17}{7}a^{13}-\frac{34}{7}a^{12}+\frac{33}{7}a^{11}-\frac{6}{7}a^{10}+\frac{96}{7}a^{9}-\frac{151}{7}a^{8}+\frac{104}{7}a^{7}+\frac{71}{7}a^{6}+3a^{5}-\frac{86}{7}a^{4}+\frac{79}{7}a^{3}+\frac{46}{7}a^{2}-\frac{90}{7}a+\frac{37}{7}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 22.560872956 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 22.560872956 \cdot 1}{2\cdot\sqrt{318497840669359}}\cr\approx \mathstrut & 0.24436091162 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 - 4*x^13 + 8*x^12 - 10*x^11 + 15*x^10 - 28*x^9 + 42*x^8 - 41*x^7 + 32*x^6 - 31*x^5 + 37*x^4 - 35*x^3 + 21*x^2 - 7*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 - 4*x^13 + 8*x^12 - 10*x^11 + 15*x^10 - 28*x^9 + 42*x^8 - 41*x^7 + 32*x^6 - 31*x^5 + 37*x^4 - 35*x^3 + 21*x^2 - 7*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^14 - 4*x^13 + 8*x^12 - 10*x^11 + 15*x^10 - 28*x^9 + 42*x^8 - 41*x^7 + 32*x^6 - 31*x^5 + 37*x^4 - 35*x^3 + 21*x^2 - 7*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 4*x^13 + 8*x^12 - 10*x^11 + 15*x^10 - 28*x^9 + 42*x^8 - 41*x^7 + 32*x^6 - 31*x^5 + 37*x^4 - 35*x^3 + 21*x^2 - 7*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^7.\GL(3,2)$ (as 14T51):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 21504
The 48 conjugacy class representatives for $C_2^7.\GL(3,2)$
Character table for $C_2^7.\GL(3,2)$ is not computed

Intermediate fields

7.3.2007889.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 14 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.7.0.1}{7} }^{2}$ ${\href{/padicField/3.14.0.1}{14} }$ ${\href{/padicField/5.7.0.1}{7} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ R ${\href{/padicField/17.3.0.1}{3} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.7.0.1}{7} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.14.0.1}{14} }$ ${\href{/padicField/47.14.0.1}{14} }$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.0.1$x^{4} + 3 x^{2} + 12 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.8.4.1$x^{8} + 520 x^{7} + 101458 x^{6} + 8810644 x^{5} + 288610205 x^{4} + 142111548 x^{3} + 982314112 x^{2} + 3617879976 x + 920156436$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(79\) Copy content Toggle raw display 79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.6.0.1$x^{6} + 19 x^{3} + 28 x^{2} + 68 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
79.6.0.1$x^{6} + 19 x^{3} + 28 x^{2} + 68 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
\(109\) Copy content Toggle raw display $\Q_{109}$$x + 103$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 103$$1$$1$$0$Trivial$[\ ]$
109.4.0.1$x^{4} + 11 x^{2} + 98 x + 6$$1$$4$$0$$C_4$$[\ ]^{4}$
109.4.2.1$x^{4} + 14604 x^{3} + 54096386 x^{2} + 5674982964 x + 401153281$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
109.4.2.1$x^{4} + 14604 x^{3} + 54096386 x^{2} + 5674982964 x + 401153281$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$