Properties

Label 12.6.40634924000000.1
Degree $12$
Signature $[6, 3]$
Discriminant $-4.063\times 10^{13}$
Root discriminant \(13.62\)
Ramified primes $2,5,11,31$
Class number $1$
Class group trivial
Galois group $A_4^2:D_4$ (as 12T208)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 2*x^10 - 7*x^8 + 6*x^7 - 11*x^6 + 8*x^5 + 21*x^4 - 18*x^3 - 6*x^2 + 7*x - 1)
 
gp: K = bnfinit(y^12 - 3*y^11 + 2*y^10 - 7*y^8 + 6*y^7 - 11*y^6 + 8*y^5 + 21*y^4 - 18*y^3 - 6*y^2 + 7*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 3*x^11 + 2*x^10 - 7*x^8 + 6*x^7 - 11*x^6 + 8*x^5 + 21*x^4 - 18*x^3 - 6*x^2 + 7*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 3*x^11 + 2*x^10 - 7*x^8 + 6*x^7 - 11*x^6 + 8*x^5 + 21*x^4 - 18*x^3 - 6*x^2 + 7*x - 1)
 

\( x^{12} - 3x^{11} + 2x^{10} - 7x^{8} + 6x^{7} - 11x^{6} + 8x^{5} + 21x^{4} - 18x^{3} - 6x^{2} + 7x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[6, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-40634924000000\) \(\medspace = -\,2^{8}\cdot 5^{6}\cdot 11\cdot 31^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(13.62\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}5^{1/2}11^{1/2}31^{2/3}\approx 116.17405213303951$
Ramified primes:   \(2\), \(5\), \(11\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{1627}a^{11}+\frac{116}{1627}a^{10}+\frac{790}{1627}a^{9}-\frac{356}{1627}a^{8}-\frac{69}{1627}a^{7}-\frac{70}{1627}a^{6}-\frac{206}{1627}a^{5}-\frac{101}{1627}a^{4}-\frac{609}{1627}a^{3}+\frac{726}{1627}a^{2}+\frac{157}{1627}a+\frac{793}{1627}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5331}{1627}a^{11}-\frac{12880}{1627}a^{10}+\frac{4068}{1627}a^{9}-\frac{754}{1627}a^{8}-\frac{34304}{1627}a^{7}+\frac{9175}{1627}a^{6}-\frac{56906}{1627}a^{5}+\frac{14749}{1627}a^{4}+\frac{106668}{1627}a^{3}-\frac{18224}{1627}a^{2}-\frac{35105}{1627}a+\frac{3791}{1627}$, $\frac{3113}{1627}a^{11}-\frac{6594}{1627}a^{10}-\frac{754}{1627}a^{9}+\frac{3013}{1627}a^{8}-\frac{22811}{1627}a^{7}+\frac{1735}{1627}a^{6}-\frac{27899}{1627}a^{5}-\frac{5283}{1627}a^{4}+\frac{77734}{1627}a^{3}-\frac{3119}{1627}a^{2}-\frac{33526}{1627}a+\frac{5331}{1627}$, $\frac{17658}{1627}a^{11}-\frac{40740}{1627}a^{10}+\frac{9684}{1627}a^{9}-\frac{1147}{1627}a^{8}-\frac{116923}{1627}a^{7}+\frac{18357}{1627}a^{6}-\frac{193189}{1627}a^{5}+\frac{17631}{1627}a^{4}+\frac{345672}{1627}a^{3}-\frac{48235}{1627}a^{2}-\frac{115619}{1627}a+\frac{21983}{1627}$, $\frac{3293}{1627}a^{11}-\frac{6865}{1627}a^{10}-\frac{103}{1627}a^{9}+\frac{759}{1627}a^{8}-\frac{22215}{1627}a^{7}-\frac{1103}{1627}a^{6}-\frac{34066}{1627}a^{5}-\frac{5566}{1627}a^{4}+\frac{68988}{1627}a^{3}+\frac{3909}{1627}a^{2}-\frac{26417}{1627}a+\frac{1641}{1627}$, $\frac{9749}{1627}a^{11}-\frac{22659}{1627}a^{10}+\frac{4373}{1627}a^{9}+\frac{3001}{1627}a^{8}-\frac{67437}{1627}a^{7}+\frac{13926}{1627}a^{6}-\frac{99823}{1627}a^{5}+\frac{7821}{1627}a^{4}+\frac{209665}{1627}a^{3}-\frac{40351}{1627}a^{2}-\frac{78510}{1627}a+\frac{20604}{1627}$, $\frac{14452}{1627}a^{11}-\frac{31918}{1627}a^{10}+\frac{3675}{1627}a^{9}+\frac{2916}{1627}a^{8}-\frac{99084}{1627}a^{7}+\frac{8489}{1627}a^{6}-\frac{152640}{1627}a^{5}-\frac{5114}{1627}a^{4}+\frac{298543}{1627}a^{3}-\frac{24776}{1627}a^{2}-\frac{104829}{1627}a+\frac{19372}{1627}$, $\frac{3341}{1627}a^{11}-\frac{7805}{1627}a^{10}+\frac{2023}{1627}a^{9}-\frac{59}{1627}a^{8}-\frac{22273}{1627}a^{7}+\frac{3672}{1627}a^{6}-\frac{35819}{1627}a^{5}+\frac{2602}{1627}a^{4}+\frac{65788}{1627}a^{3}-\frac{13307}{1627}a^{2}-\frac{23762}{1627}a+\frac{8792}{1627}$, $\frac{771}{1627}a^{11}-\frac{1676}{1627}a^{10}+\frac{592}{1627}a^{9}-\frac{1140}{1627}a^{8}-\frac{4389}{1627}a^{7}-\frac{279}{1627}a^{6}-\frac{10769}{1627}a^{5}+\frac{1852}{1627}a^{4}+\frac{10426}{1627}a^{3}+\frac{4939}{1627}a^{2}+\frac{2276}{1627}a-\frac{1976}{1627}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 164.286322613 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{3}\cdot 164.286322613 \cdot 1}{2\cdot\sqrt{40634924000000}}\cr\approx \mathstrut & 0.204569680064 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 2*x^10 - 7*x^8 + 6*x^7 - 11*x^6 + 8*x^5 + 21*x^4 - 18*x^3 - 6*x^2 + 7*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 3*x^11 + 2*x^10 - 7*x^8 + 6*x^7 - 11*x^6 + 8*x^5 + 21*x^4 - 18*x^3 - 6*x^2 + 7*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 3*x^11 + 2*x^10 - 7*x^8 + 6*x^7 - 11*x^6 + 8*x^5 + 21*x^4 - 18*x^3 - 6*x^2 + 7*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 3*x^11 + 2*x^10 - 7*x^8 + 6*x^7 - 11*x^6 + 8*x^5 + 21*x^4 - 18*x^3 - 6*x^2 + 7*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$A_4^2:D_4$ (as 12T208):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1152
The 44 conjugacy class representatives for $A_4^2:D_4$
Character table for $A_4^2:D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 6.6.1922000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}$ R ${\href{/padicField/7.12.0.1}{12} }$ R ${\href{/padicField/13.12.0.1}{12} }$ ${\href{/padicField/17.12.0.1}{12} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ R ${\href{/padicField/37.6.0.1}{6} }^{2}$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.12.0.1}{12} }$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.8.1$x^{12} + 11 x^{9} + 3 x^{8} - 9 x^{6} - 90 x^{5} + 3 x^{4} - 27 x^{3} + 135 x^{2} + 27 x + 55$$3$$4$$8$$C_3 : C_4$$[\ ]_{3}^{4}$
\(5\) Copy content Toggle raw display 5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.2.0.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.2$x^{2} + 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.6.0.1$x^{6} + 3 x^{4} + 4 x^{3} + 6 x^{2} + 7 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
\(31\) Copy content Toggle raw display 31.6.0.1$x^{6} + 19 x^{3} + 16 x^{2} + 8 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
31.6.4.2$x^{6} - 899 x^{3} + 2883$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$