Properties

Label 12.12.165...889.4
Degree $12$
Signature $[12, 0]$
Discriminant $1.655\times 10^{22}$
Root discriminant \(71.05\)
Ramified primes $7,13,29$
Class number $8$ (GRH)
Class group [2, 4] (GRH)
Galois group $A_4 \times C_2$ (as 12T7)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - 102*x^10 + 199*x^9 + 3833*x^8 - 6937*x^7 - 66192*x^6 + 105589*x^5 + 514762*x^4 - 647862*x^3 - 1393261*x^2 + 752713*x + 494507)
 
gp: K = bnfinit(y^12 - 2*y^11 - 102*y^10 + 199*y^9 + 3833*y^8 - 6937*y^7 - 66192*y^6 + 105589*y^5 + 514762*y^4 - 647862*y^3 - 1393261*y^2 + 752713*y + 494507, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^11 - 102*x^10 + 199*x^9 + 3833*x^8 - 6937*x^7 - 66192*x^6 + 105589*x^5 + 514762*x^4 - 647862*x^3 - 1393261*x^2 + 752713*x + 494507);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 - 102*x^10 + 199*x^9 + 3833*x^8 - 6937*x^7 - 66192*x^6 + 105589*x^5 + 514762*x^4 - 647862*x^3 - 1393261*x^2 + 752713*x + 494507)
 

\( x^{12} - 2 x^{11} - 102 x^{10} + 199 x^{9} + 3833 x^{8} - 6937 x^{7} - 66192 x^{6} + 105589 x^{5} + \cdots + 494507 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(16551311845247868759889\) \(\medspace = 7^{8}\cdot 13^{6}\cdot 29^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(71.05\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{2/3}13^{1/2}29^{1/2}\approx 71.05086481765254$
Ramified primes:   \(7\), \(13\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{80\!\cdots\!88}a^{11}-\frac{92\!\cdots\!37}{80\!\cdots\!88}a^{10}+\frac{18\!\cdots\!21}{80\!\cdots\!88}a^{9}+\frac{10\!\cdots\!35}{10\!\cdots\!86}a^{8}-\frac{89\!\cdots\!19}{80\!\cdots\!88}a^{7}+\frac{21\!\cdots\!60}{50\!\cdots\!43}a^{6}+\frac{24\!\cdots\!14}{50\!\cdots\!43}a^{5}-\frac{30\!\cdots\!39}{80\!\cdots\!88}a^{4}-\frac{28\!\cdots\!69}{80\!\cdots\!88}a^{3}-\frac{24\!\cdots\!75}{80\!\cdots\!88}a^{2}-\frac{69\!\cdots\!71}{20\!\cdots\!72}a-\frac{83\!\cdots\!95}{80\!\cdots\!88}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{750185696004763}{15\!\cdots\!56}a^{11}-\frac{45\!\cdots\!23}{15\!\cdots\!56}a^{10}-\frac{57\!\cdots\!05}{15\!\cdots\!56}a^{9}+\frac{93\!\cdots\!45}{37\!\cdots\!64}a^{8}+\frac{12\!\cdots\!03}{15\!\cdots\!56}a^{7}-\frac{12\!\cdots\!31}{18\!\cdots\!82}a^{6}-\frac{90\!\cdots\!23}{18\!\cdots\!82}a^{5}+\frac{96\!\cdots\!39}{15\!\cdots\!56}a^{4}-\frac{36\!\cdots\!59}{15\!\cdots\!56}a^{3}-\frac{23\!\cdots\!61}{15\!\cdots\!56}a^{2}+\frac{58\!\cdots\!95}{94\!\cdots\!91}a+\frac{55\!\cdots\!51}{15\!\cdots\!56}$, $\frac{142313445355377}{75\!\cdots\!28}a^{11}-\frac{13\!\cdots\!03}{75\!\cdots\!28}a^{10}-\frac{94\!\cdots\!99}{75\!\cdots\!28}a^{9}+\frac{56\!\cdots\!51}{37\!\cdots\!64}a^{8}+\frac{12\!\cdots\!31}{75\!\cdots\!28}a^{7}-\frac{77\!\cdots\!63}{18\!\cdots\!82}a^{6}+\frac{42\!\cdots\!77}{18\!\cdots\!82}a^{5}+\frac{31\!\cdots\!65}{75\!\cdots\!28}a^{4}-\frac{33\!\cdots\!39}{75\!\cdots\!28}a^{3}-\frac{93\!\cdots\!71}{75\!\cdots\!28}a^{2}+\frac{23\!\cdots\!39}{37\!\cdots\!64}a+\frac{35\!\cdots\!43}{75\!\cdots\!28}$, $\frac{16\!\cdots\!27}{80\!\cdots\!88}a^{11}+\frac{69\!\cdots\!37}{80\!\cdots\!88}a^{10}-\frac{16\!\cdots\!81}{80\!\cdots\!88}a^{9}-\frac{70\!\cdots\!09}{10\!\cdots\!86}a^{8}+\frac{62\!\cdots\!83}{80\!\cdots\!88}a^{7}+\frac{89\!\cdots\!78}{50\!\cdots\!43}a^{6}-\frac{70\!\cdots\!06}{50\!\cdots\!43}a^{5}-\frac{99\!\cdots\!37}{80\!\cdots\!88}a^{4}+\frac{98\!\cdots\!97}{80\!\cdots\!88}a^{3}-\frac{34\!\cdots\!17}{80\!\cdots\!88}a^{2}-\frac{68\!\cdots\!81}{20\!\cdots\!72}a+\frac{18\!\cdots\!59}{80\!\cdots\!88}$, $\frac{52\!\cdots\!85}{80\!\cdots\!88}a^{11}-\frac{35\!\cdots\!77}{80\!\cdots\!88}a^{10}-\frac{39\!\cdots\!39}{80\!\cdots\!88}a^{9}+\frac{73\!\cdots\!63}{20\!\cdots\!72}a^{8}+\frac{83\!\cdots\!73}{80\!\cdots\!88}a^{7}-\frac{98\!\cdots\!77}{10\!\cdots\!86}a^{6}-\frac{41\!\cdots\!93}{10\!\cdots\!86}a^{5}+\frac{78\!\cdots\!25}{80\!\cdots\!88}a^{4}-\frac{38\!\cdots\!05}{80\!\cdots\!88}a^{3}-\frac{21\!\cdots\!59}{80\!\cdots\!88}a^{2}+\frac{47\!\cdots\!98}{50\!\cdots\!43}a+\frac{70\!\cdots\!41}{80\!\cdots\!88}$, $\frac{13\!\cdots\!15}{80\!\cdots\!88}a^{11}-\frac{14\!\cdots\!75}{80\!\cdots\!88}a^{10}-\frac{84\!\cdots\!73}{80\!\cdots\!88}a^{9}+\frac{31\!\cdots\!41}{20\!\cdots\!72}a^{8}+\frac{70\!\cdots\!43}{80\!\cdots\!88}a^{7}-\frac{42\!\cdots\!55}{10\!\cdots\!86}a^{6}+\frac{36\!\cdots\!33}{10\!\cdots\!86}a^{5}+\frac{35\!\cdots\!27}{80\!\cdots\!88}a^{4}-\frac{45\!\cdots\!91}{80\!\cdots\!88}a^{3}-\frac{95\!\cdots\!49}{80\!\cdots\!88}a^{2}+\frac{48\!\cdots\!32}{50\!\cdots\!43}a+\frac{19\!\cdots\!19}{80\!\cdots\!88}$, $\frac{27\!\cdots\!73}{80\!\cdots\!88}a^{11}-\frac{35\!\cdots\!97}{80\!\cdots\!88}a^{10}-\frac{25\!\cdots\!83}{80\!\cdots\!88}a^{9}+\frac{72\!\cdots\!25}{20\!\cdots\!72}a^{8}+\frac{84\!\cdots\!85}{80\!\cdots\!88}a^{7}-\frac{87\!\cdots\!65}{10\!\cdots\!86}a^{6}-\frac{15\!\cdots\!29}{10\!\cdots\!86}a^{5}+\frac{57\!\cdots\!33}{80\!\cdots\!88}a^{4}+\frac{71\!\cdots\!07}{80\!\cdots\!88}a^{3}-\frac{85\!\cdots\!47}{80\!\cdots\!88}a^{2}-\frac{17\!\cdots\!07}{10\!\cdots\!86}a-\frac{63\!\cdots\!87}{80\!\cdots\!88}$, $\frac{11\!\cdots\!59}{80\!\cdots\!88}a^{11}-\frac{11\!\cdots\!63}{80\!\cdots\!88}a^{10}-\frac{76\!\cdots\!33}{80\!\cdots\!88}a^{9}+\frac{24\!\cdots\!53}{20\!\cdots\!72}a^{8}+\frac{12\!\cdots\!11}{80\!\cdots\!88}a^{7}-\frac{33\!\cdots\!61}{10\!\cdots\!86}a^{6}+\frac{22\!\cdots\!53}{10\!\cdots\!86}a^{5}+\frac{28\!\cdots\!19}{80\!\cdots\!88}a^{4}-\frac{33\!\cdots\!63}{80\!\cdots\!88}a^{3}-\frac{10\!\cdots\!57}{80\!\cdots\!88}a^{2}-\frac{40\!\cdots\!26}{50\!\cdots\!43}a+\frac{13\!\cdots\!79}{80\!\cdots\!88}$, $\frac{23\!\cdots\!67}{80\!\cdots\!88}a^{11}-\frac{15\!\cdots\!95}{80\!\cdots\!88}a^{10}-\frac{18\!\cdots\!09}{80\!\cdots\!88}a^{9}+\frac{78\!\cdots\!81}{50\!\cdots\!43}a^{8}+\frac{45\!\cdots\!91}{80\!\cdots\!88}a^{7}-\frac{21\!\cdots\!54}{50\!\cdots\!43}a^{6}-\frac{21\!\cdots\!82}{50\!\cdots\!43}a^{5}+\frac{34\!\cdots\!23}{80\!\cdots\!88}a^{4}+\frac{89\!\cdots\!61}{80\!\cdots\!88}a^{3}-\frac{10\!\cdots\!77}{80\!\cdots\!88}a^{2}-\frac{15\!\cdots\!19}{20\!\cdots\!72}a+\frac{54\!\cdots\!11}{80\!\cdots\!88}$, $\frac{25\!\cdots\!69}{20\!\cdots\!72}a^{11}-\frac{62\!\cdots\!77}{10\!\cdots\!86}a^{10}-\frac{20\!\cdots\!41}{20\!\cdots\!72}a^{9}+\frac{10\!\cdots\!23}{20\!\cdots\!72}a^{8}+\frac{24\!\cdots\!21}{10\!\cdots\!86}a^{7}-\frac{13\!\cdots\!81}{10\!\cdots\!86}a^{6}-\frac{19\!\cdots\!43}{10\!\cdots\!86}a^{5}+\frac{25\!\cdots\!63}{20\!\cdots\!72}a^{4}-\frac{16\!\cdots\!34}{50\!\cdots\!43}a^{3}-\frac{62\!\cdots\!07}{20\!\cdots\!72}a^{2}+\frac{19\!\cdots\!97}{20\!\cdots\!72}a+\frac{46\!\cdots\!08}{50\!\cdots\!43}$, $\frac{74\!\cdots\!43}{40\!\cdots\!44}a^{11}+\frac{56\!\cdots\!69}{40\!\cdots\!44}a^{10}-\frac{70\!\cdots\!93}{40\!\cdots\!44}a^{9}-\frac{71\!\cdots\!42}{50\!\cdots\!43}a^{8}+\frac{23\!\cdots\!87}{40\!\cdots\!44}a^{7}+\frac{28\!\cdots\!96}{50\!\cdots\!43}a^{6}-\frac{42\!\cdots\!88}{50\!\cdots\!43}a^{5}-\frac{36\!\cdots\!69}{40\!\cdots\!44}a^{4}+\frac{18\!\cdots\!85}{40\!\cdots\!44}a^{3}+\frac{20\!\cdots\!95}{40\!\cdots\!44}a^{2}-\frac{41\!\cdots\!63}{10\!\cdots\!86}a-\frac{89\!\cdots\!45}{40\!\cdots\!44}$, $\frac{94\!\cdots\!85}{80\!\cdots\!88}a^{11}-\frac{10\!\cdots\!69}{80\!\cdots\!88}a^{10}-\frac{58\!\cdots\!43}{80\!\cdots\!88}a^{9}+\frac{21\!\cdots\!19}{20\!\cdots\!72}a^{8}+\frac{51\!\cdots\!37}{80\!\cdots\!88}a^{7}-\frac{29\!\cdots\!81}{10\!\cdots\!86}a^{6}+\frac{22\!\cdots\!97}{10\!\cdots\!86}a^{5}+\frac{23\!\cdots\!45}{80\!\cdots\!88}a^{4}-\frac{27\!\cdots\!45}{80\!\cdots\!88}a^{3}-\frac{69\!\cdots\!11}{80\!\cdots\!88}a^{2}+\frac{25\!\cdots\!06}{50\!\cdots\!43}a+\frac{20\!\cdots\!65}{80\!\cdots\!88}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2120183.06022 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 2120183.06022 \cdot 8}{2\cdot\sqrt{16551311845247868759889}}\cr\approx \mathstrut & 0.270008284088 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - 102*x^10 + 199*x^9 + 3833*x^8 - 6937*x^7 - 66192*x^6 + 105589*x^5 + 514762*x^4 - 647862*x^3 - 1393261*x^2 + 752713*x + 494507)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 2*x^11 - 102*x^10 + 199*x^9 + 3833*x^8 - 6937*x^7 - 66192*x^6 + 105589*x^5 + 514762*x^4 - 647862*x^3 - 1393261*x^2 + 752713*x + 494507, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 2*x^11 - 102*x^10 + 199*x^9 + 3833*x^8 - 6937*x^7 - 66192*x^6 + 105589*x^5 + 514762*x^4 - 647862*x^3 - 1393261*x^2 + 752713*x + 494507);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 - 102*x^10 + 199*x^9 + 3833*x^8 - 6937*x^7 - 66192*x^6 + 105589*x^5 + 514762*x^4 - 647862*x^3 - 1393261*x^2 + 752713*x + 494507);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times A_4$ (as 12T7):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 8 conjugacy class representatives for $A_4 \times C_2$
Character table for $A_4 \times C_2$

Intermediate fields

\(\Q(\sqrt{377}) \), \(\Q(\zeta_{7})^+\), 6.6.905177.1, 6.6.128651901833.1, 6.6.341251729.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 24
Degree 6 sibling: 6.6.905177.1
Degree 8 sibling: 8.8.48501766991041.4
Degree 12 sibling: 12.12.116452742545489441.3
Minimal sibling: 6.6.905177.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{4}$ ${\href{/padicField/3.6.0.1}{6} }^{2}$ ${\href{/padicField/5.6.0.1}{6} }^{2}$ R ${\href{/padicField/11.3.0.1}{3} }^{4}$ R ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.3.0.1}{3} }^{4}$ R ${\href{/padicField/31.3.0.1}{3} }^{4}$ ${\href{/padicField/37.3.0.1}{3} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{6}$ ${\href{/padicField/47.3.0.1}{3} }^{4}$ ${\href{/padicField/53.3.0.1}{3} }^{4}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.6.4.3$x^{6} + 18 x^{5} + 117 x^{4} + 338 x^{3} + 477 x^{2} + 792 x + 1210$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 18 x^{5} + 117 x^{4} + 338 x^{3} + 477 x^{2} + 792 x + 1210$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
\(13\) Copy content Toggle raw display 13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(29\) Copy content Toggle raw display 29.2.1.1$x^{2} + 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} + 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$