Properties

Label 12.12.100...704.1
Degree $12$
Signature $[12, 0]$
Discriminant $1.004\times 10^{42}$
Root discriminant \(3163.28\)
Ramified primes $2,3,11,197$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $M_{12}$ (as 12T295)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 3036*x^10 + 16940*x^9 + 3435883*x^8 - 21476268*x^7 - 1841908992*x^6 + 11122519452*x^5 + 490521018900*x^4 - 2361270759804*x^3 - 62489273434236*x^2 + 167503033069380*x + 3005497215363897)
 
gp: K = bnfinit(y^12 - 4*y^11 - 3036*y^10 + 16940*y^9 + 3435883*y^8 - 21476268*y^7 - 1841908992*y^6 + 11122519452*y^5 + 490521018900*y^4 - 2361270759804*y^3 - 62489273434236*y^2 + 167503033069380*y + 3005497215363897, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 - 3036*x^10 + 16940*x^9 + 3435883*x^8 - 21476268*x^7 - 1841908992*x^6 + 11122519452*x^5 + 490521018900*x^4 - 2361270759804*x^3 - 62489273434236*x^2 + 167503033069380*x + 3005497215363897);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 - 3036*x^10 + 16940*x^9 + 3435883*x^8 - 21476268*x^7 - 1841908992*x^6 + 11122519452*x^5 + 490521018900*x^4 - 2361270759804*x^3 - 62489273434236*x^2 + 167503033069380*x + 3005497215363897)
 

\( x^{12} - 4 x^{11} - 3036 x^{10} + 16940 x^{9} + 3435883 x^{8} - 21476268 x^{7} - 1841908992 x^{6} + \cdots + 30\!\cdots\!97 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1003808920860966325428537416433732056776704\) \(\medspace = 2^{24}\cdot 3^{10}\cdot 11^{20}\cdot 197^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(3163.28\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{43/16}3^{7/8}11^{20/11}197^{1/2}\approx 18500.07845030721$
Ramified primes:   \(2\), \(3\), \(11\), \(197\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{7}+\frac{1}{3}a^{4}$, $\frac{1}{13\!\cdots\!91}a^{11}+\frac{83\!\cdots\!59}{13\!\cdots\!91}a^{10}+\frac{62\!\cdots\!66}{46\!\cdots\!97}a^{9}-\frac{12\!\cdots\!47}{13\!\cdots\!91}a^{8}+\frac{34\!\cdots\!23}{13\!\cdots\!91}a^{7}-\frac{85\!\cdots\!31}{46\!\cdots\!97}a^{6}+\frac{21\!\cdots\!88}{46\!\cdots\!97}a^{5}-\frac{24\!\cdots\!84}{46\!\cdots\!97}a^{4}-\frac{16\!\cdots\!12}{46\!\cdots\!97}a^{3}-\frac{99\!\cdots\!48}{15\!\cdots\!99}a^{2}-\frac{64\!\cdots\!16}{15\!\cdots\!99}a+\frac{73\!\cdots\!91}{15\!\cdots\!99}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{13\!\cdots\!89}{46\!\cdots\!97}a^{11}+\frac{32\!\cdots\!92}{46\!\cdots\!97}a^{10}-\frac{27\!\cdots\!58}{46\!\cdots\!97}a^{9}-\frac{19\!\cdots\!37}{15\!\cdots\!99}a^{8}+\frac{22\!\cdots\!73}{46\!\cdots\!97}a^{7}+\frac{36\!\cdots\!15}{46\!\cdots\!97}a^{6}-\frac{86\!\cdots\!86}{46\!\cdots\!97}a^{5}-\frac{10\!\cdots\!35}{46\!\cdots\!97}a^{4}+\frac{48\!\cdots\!62}{15\!\cdots\!99}a^{3}+\frac{49\!\cdots\!70}{15\!\cdots\!99}a^{2}-\frac{28\!\cdots\!60}{15\!\cdots\!99}a-\frac{26\!\cdots\!56}{15\!\cdots\!99}$, $\frac{35\!\cdots\!64}{13\!\cdots\!91}a^{11}-\frac{10\!\cdots\!46}{13\!\cdots\!91}a^{10}-\frac{27\!\cdots\!35}{46\!\cdots\!97}a^{9}+\frac{26\!\cdots\!55}{13\!\cdots\!91}a^{8}+\frac{57\!\cdots\!50}{13\!\cdots\!91}a^{7}-\frac{24\!\cdots\!65}{15\!\cdots\!99}a^{6}-\frac{13\!\cdots\!13}{15\!\cdots\!99}a^{5}+\frac{77\!\cdots\!46}{15\!\cdots\!99}a^{4}+\frac{10\!\cdots\!78}{46\!\cdots\!97}a^{3}-\frac{10\!\cdots\!52}{15\!\cdots\!99}a^{2}+\frac{75\!\cdots\!84}{15\!\cdots\!99}a+\frac{47\!\cdots\!83}{15\!\cdots\!99}$, $\frac{30\!\cdots\!57}{13\!\cdots\!91}a^{11}-\frac{19\!\cdots\!22}{13\!\cdots\!91}a^{10}-\frac{10\!\cdots\!70}{46\!\cdots\!97}a^{9}+\frac{35\!\cdots\!93}{13\!\cdots\!91}a^{8}-\frac{48\!\cdots\!01}{13\!\cdots\!91}a^{7}-\frac{78\!\cdots\!91}{46\!\cdots\!97}a^{6}+\frac{43\!\cdots\!86}{46\!\cdots\!97}a^{5}+\frac{22\!\cdots\!33}{46\!\cdots\!97}a^{4}-\frac{12\!\cdots\!94}{46\!\cdots\!97}a^{3}-\frac{93\!\cdots\!76}{15\!\cdots\!99}a^{2}+\frac{27\!\cdots\!02}{15\!\cdots\!99}a+\frac{41\!\cdots\!42}{15\!\cdots\!99}$, $\frac{11\!\cdots\!89}{15\!\cdots\!99}a^{11}-\frac{20\!\cdots\!76}{46\!\cdots\!97}a^{10}-\frac{67\!\cdots\!51}{46\!\cdots\!97}a^{9}+\frac{53\!\cdots\!11}{46\!\cdots\!97}a^{8}+\frac{48\!\cdots\!29}{15\!\cdots\!99}a^{7}-\frac{44\!\cdots\!50}{46\!\cdots\!97}a^{6}+\frac{23\!\cdots\!26}{46\!\cdots\!97}a^{5}+\frac{15\!\cdots\!01}{46\!\cdots\!97}a^{4}-\frac{33\!\cdots\!58}{15\!\cdots\!99}a^{3}-\frac{78\!\cdots\!36}{15\!\cdots\!99}a^{2}+\frac{36\!\cdots\!83}{15\!\cdots\!99}a+\frac{50\!\cdots\!09}{15\!\cdots\!99}$, $\frac{54\!\cdots\!64}{46\!\cdots\!97}a^{11}+\frac{13\!\cdots\!53}{46\!\cdots\!97}a^{10}-\frac{12\!\cdots\!35}{46\!\cdots\!97}a^{9}-\frac{26\!\cdots\!94}{46\!\cdots\!97}a^{8}+\frac{10\!\cdots\!00}{46\!\cdots\!97}a^{7}+\frac{18\!\cdots\!44}{46\!\cdots\!97}a^{6}-\frac{44\!\cdots\!31}{46\!\cdots\!97}a^{5}-\frac{21\!\cdots\!10}{15\!\cdots\!99}a^{4}+\frac{27\!\cdots\!98}{15\!\cdots\!99}a^{3}+\frac{33\!\cdots\!69}{15\!\cdots\!99}a^{2}-\frac{17\!\cdots\!96}{15\!\cdots\!99}a-\frac{19\!\cdots\!13}{15\!\cdots\!99}$, $\frac{29\!\cdots\!43}{13\!\cdots\!91}a^{11}-\frac{73\!\cdots\!24}{13\!\cdots\!91}a^{10}-\frac{26\!\cdots\!28}{46\!\cdots\!97}a^{9}+\frac{21\!\cdots\!20}{13\!\cdots\!91}a^{8}+\frac{72\!\cdots\!91}{13\!\cdots\!91}a^{7}-\frac{73\!\cdots\!50}{46\!\cdots\!97}a^{6}-\frac{82\!\cdots\!90}{46\!\cdots\!97}a^{5}+\frac{30\!\cdots\!71}{46\!\cdots\!97}a^{4}+\frac{71\!\cdots\!41}{46\!\cdots\!97}a^{3}-\frac{16\!\cdots\!14}{15\!\cdots\!99}a^{2}+\frac{38\!\cdots\!74}{15\!\cdots\!99}a+\frac{81\!\cdots\!79}{15\!\cdots\!99}$, $\frac{31\!\cdots\!50}{13\!\cdots\!91}a^{11}+\frac{56\!\cdots\!79}{13\!\cdots\!91}a^{10}-\frac{93\!\cdots\!06}{15\!\cdots\!99}a^{9}-\frac{12\!\cdots\!64}{13\!\cdots\!91}a^{8}+\frac{80\!\cdots\!05}{13\!\cdots\!91}a^{7}+\frac{35\!\cdots\!37}{46\!\cdots\!97}a^{6}-\frac{11\!\cdots\!37}{46\!\cdots\!97}a^{5}-\frac{45\!\cdots\!87}{15\!\cdots\!99}a^{4}+\frac{22\!\cdots\!12}{46\!\cdots\!97}a^{3}+\frac{78\!\cdots\!83}{15\!\cdots\!99}a^{2}-\frac{49\!\cdots\!98}{15\!\cdots\!99}a-\frac{48\!\cdots\!42}{15\!\cdots\!99}$, $\frac{54\!\cdots\!56}{15\!\cdots\!99}a^{11}+\frac{18\!\cdots\!90}{46\!\cdots\!97}a^{10}-\frac{43\!\cdots\!64}{46\!\cdots\!97}a^{9}-\frac{29\!\cdots\!89}{46\!\cdots\!97}a^{8}+\frac{41\!\cdots\!36}{46\!\cdots\!97}a^{7}+\frac{13\!\cdots\!83}{46\!\cdots\!97}a^{6}-\frac{18\!\cdots\!98}{46\!\cdots\!97}a^{5}-\frac{33\!\cdots\!62}{46\!\cdots\!97}a^{4}+\frac{12\!\cdots\!07}{15\!\cdots\!99}a^{3}-\frac{25\!\cdots\!78}{15\!\cdots\!99}a^{2}-\frac{90\!\cdots\!03}{15\!\cdots\!99}a+\frac{35\!\cdots\!29}{15\!\cdots\!99}$, $\frac{75\!\cdots\!59}{13\!\cdots\!91}a^{11}-\frac{68\!\cdots\!58}{13\!\cdots\!91}a^{10}-\frac{71\!\cdots\!15}{46\!\cdots\!97}a^{9}+\frac{25\!\cdots\!30}{13\!\cdots\!91}a^{8}+\frac{22\!\cdots\!64}{13\!\cdots\!91}a^{7}-\frac{10\!\cdots\!94}{46\!\cdots\!97}a^{6}-\frac{33\!\cdots\!79}{46\!\cdots\!97}a^{5}+\frac{51\!\cdots\!96}{46\!\cdots\!97}a^{4}+\frac{67\!\cdots\!50}{46\!\cdots\!97}a^{3}-\frac{35\!\cdots\!42}{15\!\cdots\!99}a^{2}-\frac{15\!\cdots\!08}{15\!\cdots\!99}a+\frac{25\!\cdots\!87}{15\!\cdots\!99}$, $\frac{13\!\cdots\!06}{13\!\cdots\!91}a^{11}+\frac{20\!\cdots\!77}{13\!\cdots\!91}a^{10}-\frac{12\!\cdots\!91}{46\!\cdots\!97}a^{9}-\frac{48\!\cdots\!97}{13\!\cdots\!91}a^{8}+\frac{38\!\cdots\!23}{13\!\cdots\!91}a^{7}+\frac{47\!\cdots\!81}{15\!\cdots\!99}a^{6}-\frac{19\!\cdots\!19}{15\!\cdots\!99}a^{5}-\frac{58\!\cdots\!27}{46\!\cdots\!97}a^{4}+\frac{11\!\cdots\!07}{46\!\cdots\!97}a^{3}+\frac{36\!\cdots\!20}{15\!\cdots\!99}a^{2}-\frac{26\!\cdots\!24}{15\!\cdots\!99}a-\frac{24\!\cdots\!15}{15\!\cdots\!99}$, $\frac{15\!\cdots\!23}{46\!\cdots\!97}a^{11}+\frac{11\!\cdots\!94}{15\!\cdots\!99}a^{10}-\frac{38\!\cdots\!83}{46\!\cdots\!97}a^{9}-\frac{75\!\cdots\!31}{46\!\cdots\!97}a^{8}+\frac{34\!\cdots\!09}{46\!\cdots\!97}a^{7}+\frac{57\!\cdots\!03}{46\!\cdots\!97}a^{6}-\frac{13\!\cdots\!61}{46\!\cdots\!97}a^{5}-\frac{19\!\cdots\!45}{46\!\cdots\!97}a^{4}+\frac{85\!\cdots\!18}{15\!\cdots\!99}a^{3}+\frac{10\!\cdots\!65}{15\!\cdots\!99}a^{2}-\frac{55\!\cdots\!57}{15\!\cdots\!99}a-\frac{59\!\cdots\!82}{15\!\cdots\!99}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 377943984207000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 377943984207000000 \cdot 1}{2\cdot\sqrt{1003808920860966325428537416433732056776704}}\cr\approx \mathstrut & 0.772559369269748 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 3036*x^10 + 16940*x^9 + 3435883*x^8 - 21476268*x^7 - 1841908992*x^6 + 11122519452*x^5 + 490521018900*x^4 - 2361270759804*x^3 - 62489273434236*x^2 + 167503033069380*x + 3005497215363897)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 - 3036*x^10 + 16940*x^9 + 3435883*x^8 - 21476268*x^7 - 1841908992*x^6 + 11122519452*x^5 + 490521018900*x^4 - 2361270759804*x^3 - 62489273434236*x^2 + 167503033069380*x + 3005497215363897, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 - 3036*x^10 + 16940*x^9 + 3435883*x^8 - 21476268*x^7 - 1841908992*x^6 + 11122519452*x^5 + 490521018900*x^4 - 2361270759804*x^3 - 62489273434236*x^2 + 167503033069380*x + 3005497215363897);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 - 3036*x^10 + 16940*x^9 + 3435883*x^8 - 21476268*x^7 - 1841908992*x^6 + 11122519452*x^5 + 490521018900*x^4 - 2361270759804*x^3 - 62489273434236*x^2 + 167503033069380*x + 3005497215363897);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$M_{12}$ (as 12T295):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 95040
The 15 conjugacy class representatives for $M_{12}$
Character table for $M_{12}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Minimal sibling: 12.12.111534324540107369492059712937081339641856.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ R ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.11.0.1}{11} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.24.146$x^{12} + 12 x^{11} + 52 x^{10} + 64 x^{9} + 162 x^{8} + 376 x^{7} + 712 x^{6} + 496 x^{5} + 996 x^{4} + 832 x^{3} + 1520 x^{2} + 800 x + 584$$4$$3$$24$12T60$[2, 2, 2, 3, 3]^{3}$
\(3\) Copy content Toggle raw display 3.4.3.2$x^{4} + 6$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
3.8.7.2$x^{8} + 6$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.11.20.8$x^{11} + 110 x^{10} + 1221$$11$$1$$20$$C_{11}$$[2]$
\(197\) Copy content Toggle raw display 197.2.0.1$x^{2} + 192 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
197.2.0.1$x^{2} + 192 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
197.4.2.1$x^{4} + 66970 x^{3} + 1127637879 x^{2} + 214058019190 x + 3496206875$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
197.4.2.1$x^{4} + 66970 x^{3} + 1127637879 x^{2} + 214058019190 x + 3496206875$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$