Properties

Label 12.0.63568613376.1
Degree $12$
Signature $[0, 6]$
Discriminant $63568613376$
Root discriminant \(7.95\)
Ramified primes $2,3,61,349$
Class number $1$
Class group trivial
Galois group $S_3\wr C_2^2$ (as 12T261)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 9*x^10 - 14*x^9 + 16*x^8 - 14*x^7 + 10*x^6 - 6*x^5 + 6*x^4 - 6*x^3 + 6*x^2 - 4*x + 1)
 
gp: K = bnfinit(y^12 - 4*y^11 + 9*y^10 - 14*y^9 + 16*y^8 - 14*y^7 + 10*y^6 - 6*y^5 + 6*y^4 - 6*y^3 + 6*y^2 - 4*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 9*x^10 - 14*x^9 + 16*x^8 - 14*x^7 + 10*x^6 - 6*x^5 + 6*x^4 - 6*x^3 + 6*x^2 - 4*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 9*x^10 - 14*x^9 + 16*x^8 - 14*x^7 + 10*x^6 - 6*x^5 + 6*x^4 - 6*x^3 + 6*x^2 - 4*x + 1)
 

\( x^{12} - 4x^{11} + 9x^{10} - 14x^{9} + 16x^{8} - 14x^{7} + 10x^{6} - 6x^{5} + 6x^{4} - 6x^{3} + 6x^{2} - 4x + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(63568613376\) \(\medspace = 2^{12}\cdot 3^{6}\cdot 61\cdot 349\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(7.95\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}61^{1/2}349^{1/2}\approx 505.4384235492984$
Ramified primes:   \(2\), \(3\), \(61\), \(349\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{21289}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{11}a^{11}+\frac{3}{11}a^{10}-\frac{3}{11}a^{9}-\frac{2}{11}a^{8}+\frac{2}{11}a^{7}-\frac{1}{11}a^{5}-\frac{2}{11}a^{4}+\frac{3}{11}a^{3}+\frac{4}{11}a^{2}+\frac{1}{11}a+\frac{3}{11}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{26}{11} a^{11} + \frac{87}{11} a^{10} - \frac{175}{11} a^{9} + \frac{250}{11} a^{8} - \frac{261}{11} a^{7} + 19 a^{6} - \frac{139}{11} a^{5} + \frac{74}{11} a^{4} - \frac{111}{11} a^{3} + \frac{94}{11} a^{2} - \frac{103}{11} a + \frac{54}{11} \)  (order $12$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{82}{11}a^{11}-\frac{282}{11}a^{10}+\frac{579}{11}a^{9}-\frac{824}{11}a^{8}+\frac{857}{11}a^{7}-62a^{6}+\frac{457}{11}a^{5}-\frac{252}{11}a^{4}+\frac{356}{11}a^{3}-\frac{288}{11}a^{2}+\frac{324}{11}a-\frac{150}{11}$, $\frac{30}{11}a^{11}-\frac{108}{11}a^{10}+\frac{229}{11}a^{9}-\frac{335}{11}a^{8}+\frac{357}{11}a^{7}-26a^{6}+\frac{190}{11}a^{5}-\frac{104}{11}a^{4}+\frac{134}{11}a^{3}-\frac{122}{11}a^{2}+\frac{129}{11}a-\frac{64}{11}$, $5a^{11}-17a^{10}+35a^{9}-50a^{8}+52a^{7}-41a^{6}+27a^{5}-15a^{4}+22a^{3}-18a^{2}+20a-9$, $\frac{70}{11}a^{11}-\frac{241}{11}a^{10}+\frac{494}{11}a^{9}-\frac{701}{11}a^{8}+\frac{723}{11}a^{7}-52a^{6}+\frac{381}{11}a^{5}-\frac{206}{11}a^{4}+\frac{298}{11}a^{3}-\frac{248}{11}a^{2}+\frac{279}{11}a-\frac{131}{11}$, $\frac{53}{11}a^{11}-\frac{182}{11}a^{10}+\frac{380}{11}a^{9}-\frac{546}{11}a^{8}+\frac{568}{11}a^{7}-41a^{6}+\frac{299}{11}a^{5}-\frac{161}{11}a^{4}+\frac{236}{11}a^{3}-\frac{195}{11}a^{2}+\frac{229}{11}a-\frac{105}{11}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9.18542221354 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 9.18542221354 \cdot 1}{12\cdot\sqrt{63568613376}}\cr\approx \mathstrut & 0.186799503979 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 9*x^10 - 14*x^9 + 16*x^8 - 14*x^7 + 10*x^6 - 6*x^5 + 6*x^4 - 6*x^3 + 6*x^2 - 4*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 + 9*x^10 - 14*x^9 + 16*x^8 - 14*x^7 + 10*x^6 - 6*x^5 + 6*x^4 - 6*x^3 + 6*x^2 - 4*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 + 9*x^10 - 14*x^9 + 16*x^8 - 14*x^7 + 10*x^6 - 6*x^5 + 6*x^4 - 6*x^3 + 6*x^2 - 4*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 9*x^10 - 14*x^9 + 16*x^8 - 14*x^7 + 10*x^6 - 6*x^5 + 6*x^4 - 6*x^3 + 6*x^2 - 4*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\wr C_2^2$ (as 12T261):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 5184
The 45 conjugacy class representatives for $S_3\wr C_2^2$
Character table for $S_3\wr C_2^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ ${\href{/padicField/13.3.0.1}{3} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.12.26$x^{12} + 12 x^{11} + 98 x^{10} + 542 x^{9} + 2359 x^{8} + 7956 x^{7} + 21831 x^{6} + 47308 x^{5} + 82476 x^{4} + 109442 x^{3} + 112071 x^{2} + 76900 x + 33205$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
\(3\) Copy content Toggle raw display 3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(61\) Copy content Toggle raw display $\Q_{61}$$x + 59$$1$$1$$0$Trivial$[\ ]$
61.2.1.2$x^{2} + 122$$2$$1$$1$$C_2$$[\ ]_{2}$
61.3.0.1$x^{3} + 7 x + 59$$1$$3$$0$$C_3$$[\ ]^{3}$
61.3.0.1$x^{3} + 7 x + 59$$1$$3$$0$$C_3$$[\ ]^{3}$
61.3.0.1$x^{3} + 7 x + 59$$1$$3$$0$$C_3$$[\ ]^{3}$
\(349\) Copy content Toggle raw display $\Q_{349}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$