Properties

Label 12.0.205924456521.1
Degree $12$
Signature $[0, 6]$
Discriminant $3^{6}\cdot 7^{10}$
Root discriminant $8.77$
Ramified primes $3, 7$
Class number $1$
Class group Trivial
Galois Group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 0, 1, -1, 0, 1, 0, -1, 1, 0, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1)
gp: K = bnfinit(x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1, 1)

Normalized defining polynomial

\(x^{12} \) \(\mathstrut -\mathstrut x^{11} \) \(\mathstrut +\mathstrut x^{9} \) \(\mathstrut -\mathstrut x^{8} \) \(\mathstrut +\mathstrut x^{6} \) \(\mathstrut -\mathstrut x^{4} \) \(\mathstrut +\mathstrut x^{3} \) \(\mathstrut -\mathstrut x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $12$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 6]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(205924456521=3^{6}\cdot 7^{10}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $8.77$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $3, 7$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is Galois and abelian over $\Q$.
Conductor:  \(21=3\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{21}(1,·)$, $\chi_{21}(2,·)$, $\chi_{21}(4,·)$, $\chi_{21}(5,·)$, $\chi_{21}(8,·)$, $\chi_{21}(10,·)$, $\chi_{21}(11,·)$, $\chi_{21}(13,·)$, $\chi_{21}(16,·)$, $\chi_{21}(17,·)$, $\chi_{21}(19,·)$, $\chi_{21}(20,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $5$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -a \) (order $42$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( a^{3} + 1 \),  \( a^{10} - a^{8} + a^{3} \),  \( a - 1 \),  \( a^{2} - 1 \),  \( a^{4} - 1 \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 70.3993980027 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-3}, \sqrt{-7})\), 6.0.64827.1, \(\Q(\zeta_{7})\), \(\Q(\zeta_{21})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$7$7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$