Properties

Label 11.1.34522712143931.1
Degree $11$
Signature $[1, 5]$
Discriminant $-3.452\times 10^{13}$
Root discriminant \(17.01\)
Ramified prime $11$
Class number $1$
Class group trivial
Galois group $F_{11}$ (as 11T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 11*x^8 + 44*x^5 + 33*x^4 + 44*x^3 - 11)
 
gp: K = bnfinit(y^11 - 11*y^8 + 44*y^5 + 33*y^4 + 44*y^3 - 11, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^11 - 11*x^8 + 44*x^5 + 33*x^4 + 44*x^3 - 11);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 11*x^8 + 44*x^5 + 33*x^4 + 44*x^3 - 11)
 

\( x^{11} - 11x^{8} + 44x^{5} + 33x^{4} + 44x^{3} - 11 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $11$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-34522712143931\) \(\medspace = -\,11^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(17.01\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{139/110}\approx 20.6986330715433$
Ramified primes:   \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{71831}a^{10}-\frac{228}{71831}a^{9}-\frac{19847}{71831}a^{8}-\frac{248}{71831}a^{7}-\frac{15287}{71831}a^{6}-\frac{34283}{71831}a^{5}-\frac{13011}{71831}a^{4}+\frac{21470}{71831}a^{3}-\frac{10608}{71831}a^{2}-\frac{23630}{71831}a+\frac{315}{71831}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{912}{71831}a^{10}+\frac{7557}{71831}a^{9}+\frac{948}{71831}a^{8}-\frac{10683}{71831}a^{7}-\frac{78361}{71831}a^{6}-\frac{19611}{71831}a^{5}+\frac{57914}{71831}a^{4}+\frac{329932}{71831}a^{3}+\frac{381844}{71831}a^{2}+\frac{286064}{71831}a+\frac{71787}{71831}$, $\frac{25621}{71831}a^{10}-\frac{23277}{71831}a^{9}-\frac{8338}{71831}a^{8}-\frac{248373}{71831}a^{7}+\frac{241709}{71831}a^{6}+\frac{56556}{71831}a^{5}+\frac{802981}{71831}a^{4}+\frac{1072}{71831}a^{3}+\frac{308260}{71831}a^{2}-\frac{248055}{71831}a+\frac{25543}{71831}$, $\frac{3292}{71831}a^{10}-\frac{32266}{71831}a^{9}+\frac{29886}{71831}a^{8}-\frac{26275}{71831}a^{7}+\frac{316051}{71831}a^{6}-\frac{300459}{71831}a^{5}+\frac{50895}{71831}a^{4}-\frac{936267}{71831}a^{3}+\frac{131992}{71831}a^{2}-\frac{140649}{71831}a+\frac{390501}{71831}$, $\frac{23277}{71831}a^{10}+\frac{8338}{71831}a^{9}-\frac{33458}{71831}a^{8}-\frac{241709}{71831}a^{7}-\frac{56556}{71831}a^{6}+\frac{324343}{71831}a^{5}+\frac{844421}{71831}a^{4}+\frac{819064}{71831}a^{3}+\frac{319886}{71831}a^{2}-\frac{25543}{71831}a-\frac{210000}{71831}$, $\frac{27608}{71831}a^{10}-\frac{45327}{71831}a^{9}-\frac{9108}{71831}a^{8}-\frac{238332}{71831}a^{7}+\frac{466446}{71831}a^{6}+\frac{32023}{71831}a^{5}+\frac{593791}{71831}a^{4}-\frac{723962}{71831}a^{3}-\frac{82508}{71831}a^{2}-\frac{367053}{71831}a+\frac{292293}{71831}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 549.701696297 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{5}\cdot 549.701696297 \cdot 1}{2\cdot\sqrt{34522712143931}}\cr\approx \mathstrut & 0.916165567202 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^11 - 11*x^8 + 44*x^5 + 33*x^4 + 44*x^3 - 11)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^11 - 11*x^8 + 44*x^5 + 33*x^4 + 44*x^3 - 11, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^11 - 11*x^8 + 44*x^5 + 33*x^4 + 44*x^3 - 11);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 11*x^8 + 44*x^5 + 33*x^4 + 44*x^3 - 11);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_{11}$ (as 11T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 110
The 11 conjugacy class representatives for $F_{11}$
Character table for $F_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ ${\href{/padicField/3.5.0.1}{5} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ R ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.11.0.1}{11} }$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display 11.11.13.6$x^{11} + 44 x^{3} + 11$$11$$1$$13$$F_{11}$$[13/10]_{10}$