Properties

Label 10.2.810091364106816.1
Degree $10$
Signature $[2, 4]$
Discriminant $8.101\times 10^{14}$
Root discriminant \(30.96\)
Ramified primes $2,3,11$
Class number $10$
Class group [10]
Galois group $A_{5}$ (as 10T7)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 6*x^8 - 22*x^7 + 48*x^6 - 48*x^5 + 104*x^4 - 132*x^3 - 144*x^2 + 112*x + 144)
 
gp: K = bnfinit(y^10 - 3*y^9 + 6*y^8 - 22*y^7 + 48*y^6 - 48*y^5 + 104*y^4 - 132*y^3 - 144*y^2 + 112*y + 144, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 3*x^9 + 6*x^8 - 22*x^7 + 48*x^6 - 48*x^5 + 104*x^4 - 132*x^3 - 144*x^2 + 112*x + 144);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 3*x^9 + 6*x^8 - 22*x^7 + 48*x^6 - 48*x^5 + 104*x^4 - 132*x^3 - 144*x^2 + 112*x + 144)
 

\( x^{10} - 3x^{9} + 6x^{8} - 22x^{7} + 48x^{6} - 48x^{5} + 104x^{4} - 132x^{3} - 144x^{2} + 112x + 144 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(810091364106816\) \(\medspace = 2^{6}\cdot 3^{10}\cdot 11^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}3^{7/6}11^{4/5}\approx 38.94415416349148$
Ramified primes:   \(2\), \(3\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{44}a^{8}+\frac{5}{44}a^{7}-\frac{3}{44}a^{6}-\frac{5}{44}a^{5}-\frac{5}{22}a^{4}+\frac{9}{22}a^{3}-\frac{5}{22}a^{2}-\frac{4}{11}a+\frac{5}{11}$, $\frac{1}{129624}a^{9}-\frac{865}{129624}a^{8}-\frac{331}{16203}a^{7}-\frac{149}{32406}a^{6}+\frac{2071}{64812}a^{5}-\frac{5867}{32406}a^{4}+\frac{9409}{32406}a^{3}+\frac{5029}{16203}a^{2}+\frac{2969}{16203}a+\frac{2234}{5401}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{10}$, which has order $10$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{133}{21604}a^{9}-\frac{151}{21604}a^{8}+\frac{845}{21604}a^{7}-\frac{668}{5401}a^{6}+\frac{311}{1964}a^{5}-\frac{1697}{10802}a^{4}+\frac{9987}{10802}a^{3}-\frac{31}{10802}a^{2}-\frac{4684}{5401}a-\frac{3035}{5401}$, $\frac{4183}{129624}a^{9}-\frac{6499}{129624}a^{8}+\frac{7553}{64812}a^{7}-\frac{37201}{64812}a^{6}+\frac{54781}{64812}a^{5}-\frac{7369}{16203}a^{4}+\frac{9041}{2946}a^{3}-\frac{21701}{16203}a^{2}-\frac{86443}{16203}a-\frac{19039}{5401}$, $\frac{205}{64812}a^{9}-\frac{565}{64812}a^{8}+\frac{697}{64812}a^{7}-\frac{1085}{16203}a^{6}+\frac{13919}{64812}a^{5}-\frac{61}{32406}a^{4}+\frac{20525}{32406}a^{3}-\frac{16823}{32406}a^{2}-\frac{24449}{16203}a-\frac{4685}{5401}$, $\frac{1637}{21604}a^{9}-\frac{604}{5401}a^{8}+\frac{1416}{5401}a^{7}-\frac{13029}{10802}a^{6}+\frac{36569}{21604}a^{5}-\frac{549}{982}a^{4}+\frac{32760}{5401}a^{3}+\frac{1959}{10802}a^{2}-\frac{6456}{491}a-\frac{47087}{5401}$, $\frac{413}{129624}a^{9}-\frac{779}{129624}a^{8}+\frac{2045}{32406}a^{7}-\frac{9653}{64812}a^{6}+\frac{12767}{64812}a^{5}-\frac{4412}{16203}a^{4}+\frac{6700}{16203}a^{3}+\frac{19196}{16203}a^{2}-\frac{5231}{16203}a-\frac{929}{5401}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3791.68777699 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 3791.68777699 \cdot 10}{2\cdot\sqrt{810091364106816}}\cr\approx \mathstrut & 4.15255158752 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 6*x^8 - 22*x^7 + 48*x^6 - 48*x^5 + 104*x^4 - 132*x^3 - 144*x^2 + 112*x + 144)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - 3*x^9 + 6*x^8 - 22*x^7 + 48*x^6 - 48*x^5 + 104*x^4 - 132*x^3 - 144*x^2 + 112*x + 144, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - 3*x^9 + 6*x^8 - 22*x^7 + 48*x^6 - 48*x^5 + 104*x^4 - 132*x^3 - 144*x^2 + 112*x + 144);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 3*x^9 + 6*x^8 - 22*x^7 + 48*x^6 - 48*x^5 + 104*x^4 - 132*x^3 - 144*x^2 + 112*x + 144);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$A_5$ (as 10T7):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 60
The 5 conjugacy class representatives for $A_{5}$
Character table for $A_{5}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 5 sibling: 5.1.4743684.1
Degree 6 sibling: 6.2.170772624.2
Degree 12 sibling: data not computed
Degree 15 sibling: data not computed
Degree 20 sibling: data not computed
Degree 30 sibling: data not computed
Minimal sibling: 5.1.4743684.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.5.0.1}{5} }^{2}$ ${\href{/padicField/7.3.0.1}{3} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }$ R ${\href{/padicField/13.5.0.1}{5} }^{2}$ ${\href{/padicField/17.5.0.1}{5} }^{2}$ ${\href{/padicField/19.3.0.1}{3} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.5.0.1}{5} }^{2}$ ${\href{/padicField/29.3.0.1}{3} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.3.0.1}{3} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.3.0.1}{3} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.5.0.1}{5} }^{2}$ ${\href{/padicField/53.3.0.1}{3} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.3.0.1}{3} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.6.7.1$x^{6} + 6 x^{2} + 6$$6$$1$$7$$S_3$$[3/2]_{2}$
\(11\) Copy content Toggle raw display 11.5.4.1$x^{5} + 55$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.1$x^{5} + 55$$5$$1$$4$$C_5$$[\ ]_{5}$