Properties

Label 10.10.669871503125.1
Degree $10$
Signature $[10, 0]$
Discriminant $669871503125$
Root discriminant \(15.23\)
Ramified primes $5,11$
Class number $1$
Class group trivial
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 - 13*x^8 + 8*x^7 + 46*x^6 - 11*x^5 - 52*x^4 + 7*x^3 + 18*x^2 - 3*x - 1)
 
gp: K = bnfinit(y^10 - y^9 - 13*y^8 + 8*y^7 + 46*y^6 - 11*y^5 - 52*y^4 + 7*y^3 + 18*y^2 - 3*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - x^9 - 13*x^8 + 8*x^7 + 46*x^6 - 11*x^5 - 52*x^4 + 7*x^3 + 18*x^2 - 3*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - x^9 - 13*x^8 + 8*x^7 + 46*x^6 - 11*x^5 - 52*x^4 + 7*x^3 + 18*x^2 - 3*x - 1)
 

\( x^{10} - x^{9} - 13x^{8} + 8x^{7} + 46x^{6} - 11x^{5} - 52x^{4} + 7x^{3} + 18x^{2} - 3x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[10, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(669871503125\) \(\medspace = 5^{5}\cdot 11^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(15.23\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}11^{4/5}\approx 15.226467164777734$
Ramified primes:   \(5\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $10$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(55=5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{55}(1,·)$, $\chi_{55}(34,·)$, $\chi_{55}(4,·)$, $\chi_{55}(9,·)$, $\chi_{55}(14,·)$, $\chi_{55}(16,·)$, $\chi_{55}(49,·)$, $\chi_{55}(36,·)$, $\chi_{55}(26,·)$, $\chi_{55}(31,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{331}a^{9}+\frac{100}{331}a^{8}+\frac{157}{331}a^{7}-\frac{23}{331}a^{6}+\frac{40}{331}a^{5}+\frac{57}{331}a^{4}+\frac{78}{331}a^{3}-\frac{59}{331}a^{2}+\frac{17}{331}a+\frac{59}{331}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{763}{331}a^{9}-\frac{492}{331}a^{8}-\frac{9961}{331}a^{7}+\frac{2311}{331}a^{6}+\frac{34492}{331}a^{5}+\frac{6088}{331}a^{4}-\frac{34159}{331}a^{3}-\frac{9931}{331}a^{2}+\frac{8006}{331}a+\frac{1325}{331}$, $\frac{229}{331}a^{9}-\frac{270}{331}a^{8}-\frac{2774}{331}a^{7}+\frac{2015}{331}a^{6}+\frac{8498}{331}a^{5}-\frac{1180}{331}a^{4}-\frac{7625}{331}a^{3}-\frac{1926}{331}a^{2}+\frac{1576}{331}a+\frac{933}{331}$, $\frac{271}{331}a^{9}-\frac{42}{331}a^{8}-\frac{3793}{331}a^{7}-\frac{606}{331}a^{6}+\frac{14481}{331}a^{5}+\frac{5517}{331}a^{4}-\frac{15272}{331}a^{3}-\frac{5728}{331}a^{2}+\frac{3283}{331}a+\frac{763}{331}$, $\frac{159}{331}a^{9}+\frac{12}{331}a^{8}-\frac{2179}{331}a^{7}-\frac{1009}{331}a^{6}+\frac{8015}{331}a^{5}+\frac{6415}{331}a^{4}-\frac{8451}{331}a^{3}-\frac{7064}{331}a^{2}+\frac{2703}{331}a+\frac{1106}{331}$, $\frac{430}{331}a^{9}-\frac{30}{331}a^{8}-\frac{5972}{331}a^{7}-\frac{1615}{331}a^{6}+\frac{22496}{331}a^{5}+\frac{11932}{331}a^{4}-\frac{23723}{331}a^{3}-\frac{12792}{331}a^{2}+\frac{5986}{331}a+\frac{1869}{331}$, $\frac{62}{331}a^{9}+\frac{242}{331}a^{8}-\frac{1189}{331}a^{7}-\frac{3081}{331}a^{6}+\frac{5790}{331}a^{5}+\frac{9492}{331}a^{4}-\frac{5756}{331}a^{3}-\frac{7299}{331}a^{2}+\frac{1054}{331}a+\frac{1010}{331}$, $\frac{28}{331}a^{9}+\frac{152}{331}a^{8}-\frac{569}{331}a^{7}-\frac{1968}{331}a^{6}+\frac{2775}{331}a^{5}+\frac{6561}{331}a^{4}-\frac{2119}{331}a^{3}-\frac{6617}{331}a^{2}-\frac{517}{331}a+\frac{1652}{331}$, $\frac{1193}{331}a^{9}-\frac{522}{331}a^{8}-\frac{15933}{331}a^{7}+\frac{696}{331}a^{6}+\frac{56988}{331}a^{5}+\frac{18020}{331}a^{4}-\frac{57882}{331}a^{3}-\frac{22723}{331}a^{2}+\frac{13992}{331}a+\frac{3194}{331}$, $\frac{492}{331}a^{9}-\frac{450}{331}a^{8}-\frac{6168}{331}a^{7}+\frac{2917}{331}a^{6}+\frac{20011}{331}a^{5}+\frac{571}{331}a^{4}-\frac{18887}{331}a^{3}-\frac{4203}{331}a^{2}+\frac{4723}{331}a+\frac{562}{331}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 274.696482776 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{0}\cdot 274.696482776 \cdot 1}{2\cdot\sqrt{669871503125}}\cr\approx \mathstrut & 0.171841204528 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 - 13*x^8 + 8*x^7 + 46*x^6 - 11*x^5 - 52*x^4 + 7*x^3 + 18*x^2 - 3*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - x^9 - 13*x^8 + 8*x^7 + 46*x^6 - 11*x^5 - 52*x^4 + 7*x^3 + 18*x^2 - 3*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - x^9 - 13*x^8 + 8*x^7 + 46*x^6 - 11*x^5 - 52*x^4 + 7*x^3 + 18*x^2 - 3*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - x^9 - 13*x^8 + 8*x^7 + 46*x^6 - 11*x^5 - 52*x^4 + 7*x^3 + 18*x^2 - 3*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{10}$ (as 10T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }$ ${\href{/padicField/3.10.0.1}{10} }$ R ${\href{/padicField/7.10.0.1}{10} }$ R ${\href{/padicField/13.10.0.1}{10} }$ ${\href{/padicField/17.10.0.1}{10} }$ ${\href{/padicField/19.5.0.1}{5} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{5}$ ${\href{/padicField/29.5.0.1}{5} }^{2}$ ${\href{/padicField/31.5.0.1}{5} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }$ ${\href{/padicField/41.5.0.1}{5} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{5}$ ${\href{/padicField/47.10.0.1}{10} }$ ${\href{/padicField/53.10.0.1}{10} }$ ${\href{/padicField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.10.5.1$x^{10} + 100 x^{9} + 4025 x^{8} + 82000 x^{7} + 860258 x^{6} + 4015486 x^{5} + 4317350 x^{4} + 2373700 x^{3} + 3853141 x^{2} + 15123594 x + 12051954$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(11\) Copy content Toggle raw display 11.5.4.4$x^{5} + 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} + 11$$5$$1$$4$$C_5$$[\ ]_{5}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 1.11.5t1.a.a$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
* 1.55.10t1.a.a$1$ $ 5 \cdot 11 $ 10.10.669871503125.1 $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.a.b$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
* 1.55.10t1.a.b$1$ $ 5 \cdot 11 $ 10.10.669871503125.1 $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.a.c$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
* 1.55.10t1.a.c$1$ $ 5 \cdot 11 $ 10.10.669871503125.1 $C_{10}$ (as 10T1) $0$ $1$
* 1.11.5t1.a.d$1$ $ 11 $ \(\Q(\zeta_{11})^+\) $C_5$ (as 5T1) $0$ $1$
* 1.55.10t1.a.d$1$ $ 5 \cdot 11 $ 10.10.669871503125.1 $C_{10}$ (as 10T1) $0$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.