# Properties

 Label 10.0.359854459.1 Degree $10$ Signature $[0, 5]$ Discriminant $-\,139\cdot 1609^{2}$ Root discriminant $7.17$ Ramified primes $139, 1609$ Class number $1$ Class group Trivial Galois Group $C_2 \wr S_5$ (as 10T39)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 3, -5, 8, -10, 11, -9, 6, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 6*x^8 - 9*x^7 + 11*x^6 - 10*x^5 + 8*x^4 - 5*x^3 + 3*x^2 - 2*x + 1)
gp: K = bnfinit(x^10 - 3*x^9 + 6*x^8 - 9*x^7 + 11*x^6 - 10*x^5 + 8*x^4 - 5*x^3 + 3*x^2 - 2*x + 1, 1)

## Normalizeddefining polynomial

$$x^{10}$$ $$\mathstrut -\mathstrut 3 x^{9}$$ $$\mathstrut +\mathstrut 6 x^{8}$$ $$\mathstrut -\mathstrut 9 x^{7}$$ $$\mathstrut +\mathstrut 11 x^{6}$$ $$\mathstrut -\mathstrut 10 x^{5}$$ $$\mathstrut +\mathstrut 8 x^{4}$$ $$\mathstrut -\mathstrut 5 x^{3}$$ $$\mathstrut +\mathstrut 3 x^{2}$$ $$\mathstrut -\mathstrut 2 x$$ $$\mathstrut +\mathstrut 1$$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $10$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[0, 5]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $$-359854459=-\,139\cdot 1609^{2}$$ magma: Discriminant(K); sage: K.disc() gp: K.disc Root discriminant: $7.17$ magma: Abs(Discriminant(K))^(1/Degree(K)); sage: (K.disc().abs())^(1./K.degree()) gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $139, 1609$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $4$ magma: UnitRank(K); sage: UK.rank() gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental units: $$a^{8} - 2 a^{7} + 4 a^{6} - 5 a^{5} + 6 a^{4} - 4 a^{3} + 3 a^{2} - a + 1$$,  $$a^{9} - 2 a^{8} + 4 a^{7} - 5 a^{6} + 5 a^{5} - 3 a^{4} + 2 a^{3} + a - 1$$,  $$a^{8} - 2 a^{7} + 3 a^{6} - 3 a^{5} + 3 a^{4} - a^{3} + a^{2} + 1$$,  $$a^{8} - 2 a^{7} + 3 a^{6} - 4 a^{5} + 4 a^{4} - 2 a^{3} + a^{2}$$ magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $$0.81336454205$$ magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

$C_2 \wr S_5$ (as 10T39):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A non-solvable group of order 3840 The 36 conjugacy class representatives for $C_2 \wr S_5$ Character table for $C_2 \wr S_5$ is not computed

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Degree 10 sibling: data not computed Degree 20 siblings: data not computed Degree 30 siblings: data not computed Degree 32 siblings: data not computed Degree 40 siblings: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ${\href{/LocalNumberField/2.10.0.1}{10} }$ ${\href{/LocalNumberField/3.10.0.1}{10} }$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
139Data not computed
1609Data not computed