Properties

Label 10.0.290954507.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,17^{2}\cdot 97^{2}\cdot 107$
Root discriminant $7.02$
Ramified primes $17, 97, 107$
Class number $1$
Class group Trivial
Galois Group $C_2 \wr S_5$ (as 10T39)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, 2, 0, 4, 4, -1, 2, 2, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - x^9 + 2*x^8 + 2*x^7 - x^6 + 4*x^5 + 4*x^4 + 2*x^2 + 3*x + 1)
gp: K = bnfinit(x^10 - x^9 + 2*x^8 + 2*x^7 - x^6 + 4*x^5 + 4*x^4 + 2*x^2 + 3*x + 1, 1)

Normalized defining polynomial

\(x^{10} \) \(\mathstrut -\mathstrut x^{9} \) \(\mathstrut +\mathstrut 2 x^{8} \) \(\mathstrut +\mathstrut 2 x^{7} \) \(\mathstrut -\mathstrut x^{6} \) \(\mathstrut +\mathstrut 4 x^{5} \) \(\mathstrut +\mathstrut 4 x^{4} \) \(\mathstrut +\mathstrut 2 x^{2} \) \(\mathstrut +\mathstrut 3 x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $10$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 5]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-290954507=-\,17^{2}\cdot 97^{2}\cdot 107\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $7.02$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $17, 97, 107$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $4$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( a^{9} - 2 a^{8} + 3 a^{7} - 3 a^{5} + 6 a^{4} - a^{3} - 2 a^{2} + 3 a + 1 \),  \( a^{9} - a^{8} + 2 a^{7} + 2 a^{6} - a^{5} + 4 a^{4} + 4 a^{3} + 2 a + 3 \),  \( 4 a^{9} - 7 a^{8} + 13 a^{7} - a^{6} - 4 a^{5} + 20 a^{4} + 2 a^{3} - 2 a^{2} + 11 a + 5 \),  \( 4 a^{9} - 7 a^{8} + 13 a^{7} - a^{6} - 4 a^{5} + 19 a^{4} + 3 a^{3} - 3 a^{2} + 10 a + 6 \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 0.702250275284 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$C_2 \wr S_5$ (as 10T39):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A non-solvable group of order 3840
The 36 conjugacy class representatives for $C_2 \wr S_5$
Character table for $C_2 \wr S_5$ is not computed

Intermediate fields

5.1.1649.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 sibling: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ ${\href{/LocalNumberField/5.10.0.1}{10} }$ ${\href{/LocalNumberField/7.10.0.1}{10} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.6.0.1$x^{6} - x + 12$$1$$6$$0$$C_6$$[\ ]^{6}$
$97$$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
97.4.2.1$x^{4} + 873 x^{2} + 235225$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
107Data not computed