Properties

Label 10.0.260270739.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,3^{5}\cdot 163\cdot 6571$
Root discriminant $6.94$
Ramified primes $3, 163, 6571$
Class number $1$
Class group Trivial
Galois Group $S_5^2 \wr C_2$ (as 10T43)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, 1, -4, -2, 3, 1, -2, -1, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - x^8 - 2*x^7 + x^6 + 3*x^5 - 2*x^4 - 4*x^3 + x^2 + 3*x + 1)
gp: K = bnfinit(x^10 - x^8 - 2*x^7 + x^6 + 3*x^5 - 2*x^4 - 4*x^3 + x^2 + 3*x + 1, 1)

Normalized defining polynomial

\(x^{10} \) \(\mathstrut -\mathstrut x^{8} \) \(\mathstrut -\mathstrut 2 x^{7} \) \(\mathstrut +\mathstrut x^{6} \) \(\mathstrut +\mathstrut 3 x^{5} \) \(\mathstrut -\mathstrut 2 x^{4} \) \(\mathstrut -\mathstrut 4 x^{3} \) \(\mathstrut +\mathstrut x^{2} \) \(\mathstrut +\mathstrut 3 x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $10$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 5]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-260270739=-\,3^{5}\cdot 163\cdot 6571\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $6.94$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $3, 163, 6571$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $4$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -5 a^{9} + 4 a^{8} + 3 a^{7} + 8 a^{6} - 11 a^{5} - 8 a^{4} + 17 a^{3} + 8 a^{2} - 13 a - 7 \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( a \),  \( a^{9} - a^{8} - a^{7} - 2 a^{6} + 3 a^{5} + 2 a^{4} - 3 a^{3} - 3 a^{2} + 4 a + 3 \),  \( a^{9} - a^{8} - 2 a^{6} + 3 a^{5} - 2 a^{3} - 2 a^{2} + 2 a + 1 \),  \( 4 a^{9} - 2 a^{8} - 3 a^{7} - 6 a^{6} + 7 a^{5} + 9 a^{4} - 13 a^{3} - 9 a^{2} + 9 a + 7 \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 1.96704129047 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$S_5^2 \wr C_2$ (as 10T43):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A non-solvable group of order 28800
The 35 conjugacy class representatives for $S_5^2 \wr C_2$
Character table for $S_5^2 \wr C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 25 sibling: data not computed
Degree 30 sibling: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }$ R ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.10.0.1}{10} }$ ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.10.5.2$x^{10} - 81 x^{2} + 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$163$$\Q_{163}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{163}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{163}$$x + 4$$1$$1$$0$Trivial$[\ ]$
163.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
163.2.1.2$x^{2} + 652$$2$$1$$1$$C_2$$[\ ]_{2}$
163.3.0.1$x^{3} - x + 14$$1$$3$$0$$C_3$$[\ ]^{3}$
6571Data not computed