Available samples

The following table shows the Galois orbits of all vector valued cusp forms of weights 10,2 to 30,2 on the full modular group $\mathrm{Sp}(4,\mathbb{Z})$.

WeightGalois orbits (number of forms)
10 10_E (1)  
14 14_C (1)  
16 16_C (2)  
18 18_C (2)  
20 20_C1 (1)   20_C2 (2)   20_E (1)  
22 22_C (5)  
24 24_C (5)  
26 26_C (8)  
28 28_C (10)  
30 30_C (11)  

Dimension table of spaces of degree 2 Siegel modular forms

The table below lists, for each bold value of $k$ in the header, the dimensions of the following subspaces of $M_{k,2}\left(\textrm{Sp}(4,\mathbb{Z})\right)$:

$4$ $5$ $6$ $7$ $8$ $9$ $10$ $11$ $12$ $13$ $14$ $15$ $16$ $17$ $18$ $19$ $20$ $21$ $22$ $23$ $24$
Total 0 0 0 0 0 0 1 0 0 0 2 0 3 0 3 0 4 1 7 1 6
Non cusp 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 2 0 1
Cusp 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0 3 1 5 1 5

Enter a new range of weights for dimension table:

$k$:     

Vector valued Siegel modular forms of degree 2 taking values in three-dimensional space

The module of vector-valued Siegel modular forms of degree 2, taking values in a three-dimensional space, with respect to the full modular group.

Let $\psi_4$, $\psi_6$, $\chi_{10}$, $\chi_{12}$ be generators of $M(\Sp(4,\Z))$, the Siegel modular forms of degree 2 with respect to the full modular group. We will write $\Gamma_2=\Sp(4,\Z)$ for short. For $f\in M_k(\Gamma_2)$ and $g\in M_j(\Gamma_2)$, define the Satoh bracket [MR:0816719] $$[f,g] = \frac 1{2\pi i}\left(\frac1k g\frac{d}{dZ}f-\frac1j f\frac{d}{dZ}g\right).$$ Then $[f,g]\in M_{k,2}(\Gamma_2)$, and for even integers $k$, $$ \begin{aligned} M_{k,2}(\Gamma_2) =& M_{k-10}(\Gamma_2) [\psi_4,\psi_6] \oplus M_{k-14}(\Gamma_2) [\psi_4,\chi_{10}] \\ &\oplus M_{k-16}(\Gamma_2) [\psi_4,\chi_{12}] \oplus V_{k-16}(\Gamma_2) [\psi_6,\chi_{10}]\\ &\oplus V_{k-18}(\Gamma_2) [\psi_6,\chi_{12}]\oplus V_{k-22}(\Gamma_2) [\chi_{10},\chi_{12}], \end{aligned} $$ where $$V_k(\Gamma_2)=M_k(\Gamma_2)\cap \C[\psi_6,\chi_{10},\chi_{12}],$$ $$W_k(\Gamma_2)=M_k(\Gamma_2)\cap \C[\chi_{10},\chi_{12}].$$

We write - $A=\psi_4$, - $B=\psi_6$, - $C=\chi_{10}$, - $D=\chi_{12}$, for short in the modular form sample pages.

Dimension tables are taken from Tsushima [MR:0816719].