Learn more about

Refine search


Results (1-50 of 1767 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{5}, \sqrt{13})\) $[1, 1, 1]$ $1$
1.1-b \(\Q(\sqrt{5}, \sqrt{13})\) $[1, 1, 1]$ $1$
9.1-a \(\Q(\sqrt{5}, \sqrt{13})\) $[9, 3, \frac{1}{4}w^{3} - \frac{11}{4}w - \frac{1}{2}]$ $1$
9.2-a \(\Q(\sqrt{5}, \sqrt{13})\) $[9,3,-\frac{1}{4}w^{3} + \frac{11}{4}w - \frac{1}{2}]$ $1$
16.1-a \(\Q(\sqrt{5}, \sqrt{13})\) $[16, 2, 2]$ $1$
16.1-b \(\Q(\sqrt{5}, \sqrt{13})\) $[16, 2, 2]$ $1$
16.1-c \(\Q(\sqrt{5}, \sqrt{13})\) $[16, 2, 2]$ $2$
16.2-a \(\Q(\sqrt{5}, \sqrt{13})\) $[16,4,-\frac{1}{2}w^{3} + \frac{9}{2}w - 2]$ $1$
16.3-a \(\Q(\sqrt{5}, \sqrt{13})\) $[16, 4, w - 2]$ $1$
25.1-a \(\Q(\sqrt{5}, \sqrt{13})\) $[25, 5, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $2$
25.1-b \(\Q(\sqrt{5}, \sqrt{13})\) $[25, 5, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $2$
25.1-c \(\Q(\sqrt{5}, \sqrt{13})\) $[25, 5, \frac{1}{2}w^{3} - \frac{7}{2}w]$ $3$
29.1-a \(\Q(\sqrt{5}, \sqrt{13})\) $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $1$
29.1-b \(\Q(\sqrt{5}, \sqrt{13})\) $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $1$
29.1-c \(\Q(\sqrt{5}, \sqrt{13})\) $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $1$
29.1-d \(\Q(\sqrt{5}, \sqrt{13})\) $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $1$
29.1-e \(\Q(\sqrt{5}, \sqrt{13})\) $[29, 29, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w - \frac{1}{2}]$ $1$
29.2-a \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $1$
29.2-b \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $1$
29.2-c \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $1$
29.2-d \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $1$
29.2-e \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} - \frac{1}{2}w + 4]$ $1$
29.3-a \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $1$
29.3-b \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $1$
29.3-c \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $1$
29.3-d \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $1$
29.3-e \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,-\frac{1}{2}w^{2} + \frac{1}{2}w + 4]$ $1$
29.4-a \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{9}{4}w - \frac{1}{2}]$ $1$
29.4-b \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{9}{4}w - \frac{1}{2}]$ $1$
29.4-c \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{9}{4}w - \frac{1}{2}]$ $1$
29.4-d \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{9}{4}w - \frac{1}{2}]$ $1$
29.4-e \(\Q(\sqrt{5}, \sqrt{13})\) $[29,29,\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{9}{4}w - \frac{1}{2}]$ $1$
36.1-a \(\Q(\sqrt{5}, \sqrt{13})\) $[36, 6, -\frac{1}{2}w^{2} - \frac{1}{2}w + 5]$ $1$
36.1-b \(\Q(\sqrt{5}, \sqrt{13})\) $[36, 6, -\frac{1}{2}w^{2} - \frac{1}{2}w + 5]$ $1$
36.1-c \(\Q(\sqrt{5}, \sqrt{13})\) $[36, 6, -\frac{1}{2}w^{2} - \frac{1}{2}w + 5]$ $2$
36.1-d \(\Q(\sqrt{5}, \sqrt{13})\) $[36, 6, -\frac{1}{2}w^{2} - \frac{1}{2}w + 5]$ $3$
36.2-a \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,-\frac{1}{2}w^{2} + \frac{1}{2}w + 5]$ $1$
36.2-b \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,-\frac{1}{2}w^{2} + \frac{1}{2}w + 5]$ $1$
36.2-c \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,-\frac{1}{2}w^{2} + \frac{1}{2}w + 5]$ $2$
36.2-d \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,-\frac{1}{2}w^{2} + \frac{1}{2}w + 5]$ $3$
36.3-a \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{9}{4}w + \frac{1}{2}]$ $1$
36.3-b \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{9}{4}w + \frac{1}{2}]$ $1$
36.3-c \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{9}{4}w + \frac{1}{2}]$ $2$
36.3-d \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,\frac{1}{4}w^{3} + \frac{1}{2}w^{2} - \frac{9}{4}w + \frac{1}{2}]$ $3$
36.4-a \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,-\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w + \frac{1}{2}]$ $1$
36.4-b \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,-\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w + \frac{1}{2}]$ $1$
36.4-c \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,-\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w + \frac{1}{2}]$ $2$
36.4-d \(\Q(\sqrt{5}, \sqrt{13})\) $[36,6,-\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{9}{4}w + \frac{1}{2}]$ $3$
49.1-a \(\Q(\sqrt{5}, \sqrt{13})\) $[49, 7, \frac{3}{4}w^{3} + \frac{1}{2}w^{2} - \frac{23}{4}w - \frac{3}{2}]$ $2$
49.1-b \(\Q(\sqrt{5}, \sqrt{13})\) $[49, 7, \frac{3}{4}w^{3} + \frac{1}{2}w^{2} - \frac{23}{4}w - \frac{3}{2}]$ $3$
Next