Learn more about

Further refine search

Refine search


Results (1-50 of 2288 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{3}, \sqrt{5})\) $[1, 1, 1]$ $1$
1.1-b \(\Q(\sqrt{3}, \sqrt{5})\) $[1, 1, 1]$ $1$
9.1-a \(\Q(\sqrt{3}, \sqrt{5})\) $[9, 3, -\frac{2}{7}w^{3} + \frac{3}{7}w^{2} + \frac{19}{7}w - \frac{10}{7}]$ $2$
16.1-a \(\Q(\sqrt{3}, \sqrt{5})\) $[16, 2, 2]$ $1$
16.1-b \(\Q(\sqrt{3}, \sqrt{5})\) $[16, 2, 2]$ $2$
25.1-a \(\Q(\sqrt{3}, \sqrt{5})\) $[25, 5, \frac{4}{7}w^{3} - \frac{6}{7}w^{2} - \frac{24}{7}w + \frac{13}{7}]$ $2$
25.1-b \(\Q(\sqrt{3}, \sqrt{5})\) $[25, 5, \frac{4}{7}w^{3} - \frac{6}{7}w^{2} - \frac{24}{7}w + \frac{13}{7}]$ $4$
36.1-a \(\Q(\sqrt{3}, \sqrt{5})\) $[36, 6, \frac{2}{7}w^{3} - \frac{3}{7}w^{2} - \frac{19}{7}w + \frac{31}{7}]$ $1$
36.1-b \(\Q(\sqrt{3}, \sqrt{5})\) $[36, 6, \frac{2}{7}w^{3} - \frac{3}{7}w^{2} - \frac{19}{7}w + \frac{31}{7}]$ $1$
36.1-c \(\Q(\sqrt{3}, \sqrt{5})\) $[36, 6, \frac{2}{7}w^{3} - \frac{3}{7}w^{2} - \frac{19}{7}w + \frac{31}{7}]$ $2$
36.1-d \(\Q(\sqrt{3}, \sqrt{5})\) $[36, 6, \frac{2}{7}w^{3} - \frac{3}{7}w^{2} - \frac{19}{7}w + \frac{31}{7}]$ $2$
44.1-a \(\Q(\sqrt{3}, \sqrt{5})\) $[44, 22, \frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{18}{7}w + \frac{15}{7}]$ $1$
44.1-b \(\Q(\sqrt{3}, \sqrt{5})\) $[44, 22, \frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{18}{7}w + \frac{15}{7}]$ $1$
44.1-c \(\Q(\sqrt{3}, \sqrt{5})\) $[44, 22, \frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{18}{7}w + \frac{15}{7}]$ $1$
44.1-d \(\Q(\sqrt{3}, \sqrt{5})\) $[44, 22, \frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{18}{7}w + \frac{15}{7}]$ $1$
44.2-a \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,\frac{1}{7}w^{3} + \frac{2}{7}w^{2} - \frac{6}{7}w - \frac{23}{7}]$ $1$
44.2-b \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,\frac{1}{7}w^{3} + \frac{2}{7}w^{2} - \frac{6}{7}w - \frac{23}{7}]$ $1$
44.2-c \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,\frac{1}{7}w^{3} + \frac{2}{7}w^{2} - \frac{6}{7}w - \frac{23}{7}]$ $1$
44.2-d \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,\frac{1}{7}w^{3} + \frac{2}{7}w^{2} - \frac{6}{7}w - \frac{23}{7}]$ $1$
44.3-a \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,-\frac{1}{7}w^{3} + \frac{5}{7}w^{2} - \frac{1}{7}w - \frac{26}{7}]$ $1$
44.3-b \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,-\frac{1}{7}w^{3} + \frac{5}{7}w^{2} - \frac{1}{7}w - \frac{26}{7}]$ $1$
44.3-c \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,-\frac{1}{7}w^{3} + \frac{5}{7}w^{2} - \frac{1}{7}w - \frac{26}{7}]$ $1$
44.3-d \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,-\frac{1}{7}w^{3} + \frac{5}{7}w^{2} - \frac{1}{7}w - \frac{26}{7}]$ $1$
44.4-a \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,-\frac{3}{7}w^{3} + \frac{1}{7}w^{2} + \frac{25}{7}w - \frac{8}{7}]$ $1$
44.4-b \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,-\frac{3}{7}w^{3} + \frac{1}{7}w^{2} + \frac{25}{7}w - \frac{8}{7}]$ $1$
44.4-c \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,-\frac{3}{7}w^{3} + \frac{1}{7}w^{2} + \frac{25}{7}w - \frac{8}{7}]$ $1$
44.4-d \(\Q(\sqrt{3}, \sqrt{5})\) $[44,22,-\frac{3}{7}w^{3} + \frac{1}{7}w^{2} + \frac{25}{7}w - \frac{8}{7}]$ $1$
49.1-a \(\Q(\sqrt{3}, \sqrt{5})\) $[49, 7, \frac{5}{7}w^{3} - \frac{11}{7}w^{2} - \frac{23}{7}w + \frac{25}{7}]$ $2$
49.1-b \(\Q(\sqrt{3}, \sqrt{5})\) $[49, 7, \frac{5}{7}w^{3} - \frac{11}{7}w^{2} - \frac{23}{7}w + \frac{25}{7}]$ $4$
49.1-c \(\Q(\sqrt{3}, \sqrt{5})\) $[49, 7, \frac{5}{7}w^{3} - \frac{11}{7}w^{2} - \frac{23}{7}w + \frac{25}{7}]$ $4$
49.2-a \(\Q(\sqrt{3}, \sqrt{5})\) $[49,7,-w^{3} + 2w^{2} + 6w - 6]$ $2$
49.2-b \(\Q(\sqrt{3}, \sqrt{5})\) $[49,7,-w^{3} + 2w^{2} + 6w - 6]$ $4$
49.2-c \(\Q(\sqrt{3}, \sqrt{5})\) $[49,7,-w^{3} + 2w^{2} + 6w - 6]$ $4$
59.1-a \(\Q(\sqrt{3}, \sqrt{5})\) $[59, 59, \frac{3}{7}w^{3} - \frac{1}{7}w^{2} - \frac{32}{7}w + \frac{15}{7}]$ $1$
59.1-b \(\Q(\sqrt{3}, \sqrt{5})\) $[59, 59, \frac{3}{7}w^{3} - \frac{1}{7}w^{2} - \frac{32}{7}w + \frac{15}{7}]$ $1$
59.1-c \(\Q(\sqrt{3}, \sqrt{5})\) $[59, 59, \frac{3}{7}w^{3} - \frac{1}{7}w^{2} - \frac{32}{7}w + \frac{15}{7}]$ $1$
59.1-d \(\Q(\sqrt{3}, \sqrt{5})\) $[59, 59, \frac{3}{7}w^{3} - \frac{1}{7}w^{2} - \frac{32}{7}w + \frac{15}{7}]$ $1$
59.1-e \(\Q(\sqrt{3}, \sqrt{5})\) $[59, 59, \frac{3}{7}w^{3} - \frac{1}{7}w^{2} - \frac{32}{7}w + \frac{15}{7}]$ $2$
59.1-f \(\Q(\sqrt{3}, \sqrt{5})\) $[59, 59, \frac{3}{7}w^{3} - \frac{1}{7}w^{2} - \frac{32}{7}w + \frac{15}{7}]$ $2$
59.2-a \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,\frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{25}{7}w + \frac{43}{7}]$ $1$
59.2-b \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,\frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{25}{7}w + \frac{43}{7}]$ $1$
59.2-c \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,\frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{25}{7}w + \frac{43}{7}]$ $1$
59.2-d \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,\frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{25}{7}w + \frac{43}{7}]$ $1$
59.2-e \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,\frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{25}{7}w + \frac{43}{7}]$ $2$
59.2-f \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,\frac{3}{7}w^{3} - \frac{8}{7}w^{2} - \frac{25}{7}w + \frac{43}{7}]$ $2$
59.3-a \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,-\frac{3}{7}w^{3} + \frac{1}{7}w^{2} + \frac{32}{7}w + \frac{13}{7}]$ $1$
59.3-b \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,-\frac{3}{7}w^{3} + \frac{1}{7}w^{2} + \frac{32}{7}w + \frac{13}{7}]$ $1$
59.3-c \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,-\frac{3}{7}w^{3} + \frac{1}{7}w^{2} + \frac{32}{7}w + \frac{13}{7}]$ $1$
59.3-d \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,-\frac{3}{7}w^{3} + \frac{1}{7}w^{2} + \frac{32}{7}w + \frac{13}{7}]$ $1$
59.3-e \(\Q(\sqrt{3}, \sqrt{5})\) $[59,59,-\frac{3}{7}w^{3} + \frac{1}{7}w^{2} + \frac{32}{7}w + \frac{13}{7}]$ $2$
Next