Learn more about

Further refine search

Refine search


Results (1-50 of 3456 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[1, 1, 1]$ $1$
9.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[9, 3, -w^{2} + 2]$ $1$
9.1-b \(\Q(\sqrt{2}, \sqrt{3})\) $[9, 3, -w^{2} + 2]$ $1$
16.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[16, 2, 2]$ $1$
16.1-b \(\Q(\sqrt{2}, \sqrt{3})\) $[16, 2, 2]$ $1$
25.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[25,5,-w^{3} + 5w - 1]$ $4$
25.2-a \(\Q(\sqrt{2}, \sqrt{3})\) $[25, 5, w^{3} - 5w - 1]$ $4$
36.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[36, 6, w^{3} - 5w]$ $2$
46.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[46, 46, w + 3]$ $1$
46.1-b \(\Q(\sqrt{2}, \sqrt{3})\) $[46, 46, w + 3]$ $1$
46.1-c \(\Q(\sqrt{2}, \sqrt{3})\) $[46, 46, w + 3]$ $1$
46.1-d \(\Q(\sqrt{2}, \sqrt{3})\) $[46, 46, w + 3]$ $1$
46.2-a \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,w^{3} - 4w + 3]$ $1$
46.2-b \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,w^{3} - 4w + 3]$ $1$
46.2-c \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,w^{3} - 4w + 3]$ $1$
46.2-d \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,w^{3} - 4w + 3]$ $1$
46.3-a \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,-w^{3} + 4w + 3]$ $1$
46.3-b \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,-w^{3} + 4w + 3]$ $1$
46.3-c \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,-w^{3} + 4w + 3]$ $1$
46.3-d \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,-w^{3} + 4w + 3]$ $1$
46.4-a \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,-w + 3]$ $1$
46.4-b \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,-w + 3]$ $1$
46.4-c \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,-w + 3]$ $1$
46.4-d \(\Q(\sqrt{2}, \sqrt{3})\) $[46,46,-w + 3]$ $1$
47.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[47, 47, -3w^{3} + 2w^{2} + 12w - 8]$ $1$
47.1-b \(\Q(\sqrt{2}, \sqrt{3})\) $[47, 47, -3w^{3} + 2w^{2} + 12w - 8]$ $1$
47.2-a \(\Q(\sqrt{2}, \sqrt{3})\) $[47,47,-2w^{2} + 3w]$ $1$
47.2-b \(\Q(\sqrt{2}, \sqrt{3})\) $[47,47,-2w^{2} + 3w]$ $1$
47.3-a \(\Q(\sqrt{2}, \sqrt{3})\) $[47,47,-2w^{2} - 3w]$ $1$
47.3-b \(\Q(\sqrt{2}, \sqrt{3})\) $[47,47,-2w^{2} - 3w]$ $1$
47.4-a \(\Q(\sqrt{2}, \sqrt{3})\) $[47,47,3w^{3} + 2w^{2} - 12w - 8]$ $1$
47.4-b \(\Q(\sqrt{2}, \sqrt{3})\) $[47,47,3w^{3} + 2w^{2} - 12w - 8]$ $1$
49.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[49, 7, 2w^{3} - 6w - 1]$ $1$
49.1-b \(\Q(\sqrt{2}, \sqrt{3})\) $[49, 7, 2w^{3} - 6w - 1]$ $1$
49.1-c \(\Q(\sqrt{2}, \sqrt{3})\) $[49, 7, 2w^{3} - 6w - 1]$ $6$
49.2-a \(\Q(\sqrt{2}, \sqrt{3})\) $[49,7,-2w^{3} + 6w - 1]$ $1$
49.2-b \(\Q(\sqrt{2}, \sqrt{3})\) $[49,7,-2w^{3} + 6w - 1]$ $1$
49.2-c \(\Q(\sqrt{2}, \sqrt{3})\) $[49,7,-2w^{3} + 6w - 1]$ $6$
50.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[50, 10, -w^{2} + w + 4]$ $1$
50.1-b \(\Q(\sqrt{2}, \sqrt{3})\) $[50, 10, -w^{2} + w + 4]$ $1$
50.2-a \(\Q(\sqrt{2}, \sqrt{3})\) $[50,10,-w^{2} - w + 4]$ $1$
50.2-b \(\Q(\sqrt{2}, \sqrt{3})\) $[50,10,-w^{2} - w + 4]$ $1$
64.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[64, 4, 2w^{3} - 6w]$ $1$
64.1-b \(\Q(\sqrt{2}, \sqrt{3})\) $[64, 4, 2w^{3} - 6w]$ $1$
64.1-c \(\Q(\sqrt{2}, \sqrt{3})\) $[64, 4, 2w^{3} - 6w]$ $1$
64.1-d \(\Q(\sqrt{2}, \sqrt{3})\) $[64, 4, 2w^{3} - 6w]$ $2$
71.1-a \(\Q(\sqrt{2}, \sqrt{3})\) $[71, 71, 2w^{3} - w^{2} - 7w + 1]$ $3$
71.1-b \(\Q(\sqrt{2}, \sqrt{3})\) $[71, 71, 2w^{3} - w^{2} - 7w + 1]$ $3$
71.2-a \(\Q(\sqrt{2}, \sqrt{3})\) $[71,71,-w^{3} + w^{2} + 2w - 3]$ $3$
71.2-b \(\Q(\sqrt{2}, \sqrt{3})\) $[71,71,-w^{3} + w^{2} + 2w - 3]$ $3$
Next