Learn more about

Refine search


Results (1-50 of 168 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{5}, \sqrt{7})\) $[1, 1, 1]$ $1$
1.1-b \(\Q(\sqrt{5}, \sqrt{7})\) $[1, 1, 1]$ $1$
1.1-c \(\Q(\sqrt{5}, \sqrt{7})\) $[1, 1, 1]$ $1$
1.1-d \(\Q(\sqrt{5}, \sqrt{7})\) $[1, 1, 1]$ $2$
1.1-e \(\Q(\sqrt{5}, \sqrt{7})\) $[1, 1, 1]$ $4$
4.1-a \(\Q(\sqrt{5}, \sqrt{7})\) $[4, 2, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{1}{23}]$ $2$
4.1-b \(\Q(\sqrt{5}, \sqrt{7})\) $[4, 2, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{1}{23}]$ $4$
9.1-a \(\Q(\sqrt{5}, \sqrt{7})\) $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w + \frac{24}{23}]$ $4$
9.1-b \(\Q(\sqrt{5}, \sqrt{7})\) $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w + \frac{24}{23}]$ $6$
9.1-c \(\Q(\sqrt{5}, \sqrt{7})\) $[9, 3, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} + \frac{43}{23}w + \frac{24}{23}]$ $8$
9.2-a \(\Q(\sqrt{5}, \sqrt{7})\) $[9,3,\frac{2}{23}w^{3} - \frac{3}{23}w^{2} - \frac{43}{23}w + \frac{68}{23}]$ $4$
9.2-b \(\Q(\sqrt{5}, \sqrt{7})\) $[9,3,\frac{2}{23}w^{3} - \frac{3}{23}w^{2} - \frac{43}{23}w + \frac{68}{23}]$ $6$
9.2-c \(\Q(\sqrt{5}, \sqrt{7})\) $[9,3,\frac{2}{23}w^{3} - \frac{3}{23}w^{2} - \frac{43}{23}w + \frac{68}{23}]$ $8$
16.1-a \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-b \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-c \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $2$
16.1-d \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $2$
16.1-e \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $2$
16.1-f \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $2$
16.1-g \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $4$
16.1-h \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $4$
16.1-i \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $4$
16.1-j \(\Q(\sqrt{5}, \sqrt{7})\) $[16, 2, 2]$ $8$
19.1-a \(\Q(\sqrt{5}, \sqrt{7})\) $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{24}{23}]$ $20$
19.1-b \(\Q(\sqrt{5}, \sqrt{7})\) $[19, 19, -\frac{2}{23}w^{3} + \frac{3}{23}w^{2} - \frac{3}{23}w + \frac{24}{23}]$ $20$
19.2-a \(\Q(\sqrt{5}, \sqrt{7})\) $[19,19,-\frac{6}{23}w^{3} + \frac{9}{23}w^{2} + \frac{83}{23}w - \frac{20}{23}]$ $20$
19.2-b \(\Q(\sqrt{5}, \sqrt{7})\) $[19,19,-\frac{6}{23}w^{3} + \frac{9}{23}w^{2} + \frac{83}{23}w - \frac{20}{23}]$ $20$
19.3-a \(\Q(\sqrt{5}, \sqrt{7})\) $[19,19,\frac{6}{23}w^{3} - \frac{9}{23}w^{2} - \frac{83}{23}w + \frac{66}{23}]$ $20$
19.3-b \(\Q(\sqrt{5}, \sqrt{7})\) $[19,19,\frac{6}{23}w^{3} - \frac{9}{23}w^{2} - \frac{83}{23}w + \frac{66}{23}]$ $20$
19.4-a \(\Q(\sqrt{5}, \sqrt{7})\) $[19,19,\frac{2}{23}w^{3} - \frac{3}{23}w^{2} + \frac{3}{23}w + \frac{22}{23}]$ $20$
19.4-b \(\Q(\sqrt{5}, \sqrt{7})\) $[19,19,\frac{2}{23}w^{3} - \frac{3}{23}w^{2} + \frac{3}{23}w + \frac{22}{23}]$ $20$
25.1-a \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $1$
25.1-b \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $1$
25.1-c \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $1$
25.1-d \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $1$
25.1-e \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $1$
25.1-f \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $1$
25.1-g \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $2$
25.1-h \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $2$
25.1-i \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $2$
25.1-j \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $2$
25.1-k \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $2$
25.1-l \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $2$
25.1-m \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $4$
25.1-n \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $4$
25.1-o \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $4$
25.1-p \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $4$
25.1-q \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $4$
25.1-r \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $4$
25.1-s \(\Q(\sqrt{5}, \sqrt{7})\) $[25, 5, -\frac{4}{23}w^{3} + \frac{6}{23}w^{2} + \frac{40}{23}w - \frac{21}{23}]$ $20$
Next