Learn more about

Further refine search

Refine search


Results (1-50 of 742 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{2}, \sqrt{17})\) $[1, 1, 1]$ $2$
1.1-b \(\Q(\sqrt{2}, \sqrt{17})\) $[1, 1, 1]$ $2$
1.1-c \(\Q(\sqrt{2}, \sqrt{17})\) $[1, 1, 1]$ $4$
1.1-d \(\Q(\sqrt{2}, \sqrt{17})\) $[1, 1, 1]$ $4$
2.1-a \(\Q(\sqrt{2}, \sqrt{17})\) $[2, 2, \frac{4}{9}w^{3} - \frac{2}{3}w^{2} - \frac{47}{9}w + \frac{20}{9}]$ $2$
2.2-a \(\Q(\sqrt{2}, \sqrt{17})\) $[2,2,-\frac{4}{9}w^{3} + \frac{2}{3}w^{2} + \frac{47}{9}w - \frac{29}{9}]$ $2$
4.1-a \(\Q(\sqrt{2}, \sqrt{17})\) $[4, 2, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{28}{9}]$ $1$
4.1-b \(\Q(\sqrt{2}, \sqrt{17})\) $[4, 2, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{28}{9}]$ $1$
4.2-a \(\Q(\sqrt{2}, \sqrt{17})\) $[4, 2, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{19}{9}w + \frac{10}{9}]$ $1$
4.2-b \(\Q(\sqrt{2}, \sqrt{17})\) $[4, 2, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{19}{9}w + \frac{10}{9}]$ $1$
4.2-c \(\Q(\sqrt{2}, \sqrt{17})\) $[4, 2, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{19}{9}w + \frac{10}{9}]$ $4$
4.3-a \(\Q(\sqrt{2}, \sqrt{17})\) $[4,2,-\frac{2}{9}w^{3} + \frac{1}{3}w^{2} + \frac{28}{9}w - \frac{1}{9}]$ $1$
4.3-b \(\Q(\sqrt{2}, \sqrt{17})\) $[4,2,-\frac{2}{9}w^{3} + \frac{1}{3}w^{2} + \frac{28}{9}w - \frac{1}{9}]$ $1$
8.1-a \(\Q(\sqrt{2}, \sqrt{17})\) $[8, 2, w^{3} - 2w^{2} - 11w + 12]$ $2$
8.1-b \(\Q(\sqrt{2}, \sqrt{17})\) $[8, 2, w^{3} - 2w^{2} - 11w + 12]$ $2$
8.2-a \(\Q(\sqrt{2}, \sqrt{17})\) $[8,2,-w^{3} + w^{2} + 12w]$ $2$
8.2-b \(\Q(\sqrt{2}, \sqrt{17})\) $[8,2,-w^{3} + w^{2} + 12w]$ $2$
8.3-a \(\Q(\sqrt{2}, \sqrt{17})\) $[8, 4, -\frac{1}{9}w^{3} + \frac{2}{3}w^{2} - \frac{4}{9}w + \frac{4}{9}]$ $1$
8.3-b \(\Q(\sqrt{2}, \sqrt{17})\) $[8, 4, -\frac{1}{9}w^{3} + \frac{2}{3}w^{2} - \frac{4}{9}w + \frac{4}{9}]$ $1$
8.3-c \(\Q(\sqrt{2}, \sqrt{17})\) $[8, 4, -\frac{1}{9}w^{3} + \frac{2}{3}w^{2} - \frac{4}{9}w + \frac{4}{9}]$ $2$
8.3-d \(\Q(\sqrt{2}, \sqrt{17})\) $[8, 4, -\frac{1}{9}w^{3} + \frac{2}{3}w^{2} - \frac{4}{9}w + \frac{4}{9}]$ $4$
8.4-a \(\Q(\sqrt{2}, \sqrt{17})\) $[8,4,\frac{1}{9}w^{3} + \frac{1}{3}w^{2} - \frac{5}{9}w + \frac{5}{9}]$ $1$
8.4-b \(\Q(\sqrt{2}, \sqrt{17})\) $[8,4,\frac{1}{9}w^{3} + \frac{1}{3}w^{2} - \frac{5}{9}w + \frac{5}{9}]$ $1$
8.4-c \(\Q(\sqrt{2}, \sqrt{17})\) $[8,4,\frac{1}{9}w^{3} + \frac{1}{3}w^{2} - \frac{5}{9}w + \frac{5}{9}]$ $2$
8.4-d \(\Q(\sqrt{2}, \sqrt{17})\) $[8,4,\frac{1}{9}w^{3} + \frac{1}{3}w^{2} - \frac{5}{9}w + \frac{5}{9}]$ $4$
9.1-a \(\Q(\sqrt{2}, \sqrt{17})\) $[9, 3, \frac{1}{3}w^{3} - \frac{11}{3}w - \frac{1}{3}]$ $2$
9.1-b \(\Q(\sqrt{2}, \sqrt{17})\) $[9, 3, \frac{1}{3}w^{3} - \frac{11}{3}w - \frac{1}{3}]$ $2$
9.1-c \(\Q(\sqrt{2}, \sqrt{17})\) $[9, 3, \frac{1}{3}w^{3} - \frac{11}{3}w - \frac{1}{3}]$ $10$
9.1-d \(\Q(\sqrt{2}, \sqrt{17})\) $[9, 3, \frac{1}{3}w^{3} - \frac{11}{3}w - \frac{1}{3}]$ $10$
9.2-a \(\Q(\sqrt{2}, \sqrt{17})\) $[9,3,-\frac{1}{3}w^{3} + \frac{11}{3}w + \frac{7}{3}]$ $2$
9.2-b \(\Q(\sqrt{2}, \sqrt{17})\) $[9,3,-\frac{1}{3}w^{3} + \frac{11}{3}w + \frac{7}{3}]$ $2$
9.2-c \(\Q(\sqrt{2}, \sqrt{17})\) $[9,3,-\frac{1}{3}w^{3} + \frac{11}{3}w + \frac{7}{3}]$ $10$
9.2-d \(\Q(\sqrt{2}, \sqrt{17})\) $[9,3,-\frac{1}{3}w^{3} + \frac{11}{3}w + \frac{7}{3}]$ $10$
16.1-a \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 2, 2]$ $1$
16.1-b \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 2, 2]$ $1$
16.1-c \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 2, 2]$ $4$
16.2-a \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{1}{3}w^{3} - w^{2} - \frac{8}{3}w + \frac{14}{3}]$ $2$
16.2-b \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{1}{3}w^{3} - w^{2} - \frac{8}{3}w + \frac{14}{3}]$ $2$
16.2-c \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{1}{3}w^{3} - w^{2} - \frac{8}{3}w + \frac{14}{3}]$ $4$
16.2-d \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{1}{3}w^{3} - w^{2} - \frac{8}{3}w + \frac{14}{3}]$ $4$
16.3-a \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $1$
16.3-b \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $1$
16.3-c \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $1$
16.3-d \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $1$
16.3-e \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $2$
16.3-f \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $2$
16.3-g \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $2$
16.3-h \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $2$
16.3-i \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $4$
16.3-j \(\Q(\sqrt{2}, \sqrt{17})\) $[16, 4, \frac{2}{9}w^{3} - \frac{1}{3}w^{2} - \frac{28}{9}w + \frac{10}{9}]$ $4$
Next