Learn more about

Refine search


Results (1-50 of 482 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{5}, \sqrt{6})\) $[1, 1, 1]$ $1$
1.1-b \(\Q(\sqrt{5}, \sqrt{6})\) $[1, 1, 1]$ $1$
1.1-c \(\Q(\sqrt{5}, \sqrt{6})\) $[1, 1, 1]$ $1$
1.1-d \(\Q(\sqrt{5}, \sqrt{6})\) $[1, 1, 1]$ $4$
4.1-a \(\Q(\sqrt{5}, \sqrt{6})\) $[4, 2, -\frac{2}{19}w^{3} + \frac{3}{19}w^{2} + \frac{37}{19}w - 3]$ $4$
5.1-a \(\Q(\sqrt{5}, \sqrt{6})\) $[5, 5, \frac{3}{19}w^{3} + \frac{5}{19}w^{2} - \frac{27}{19}w - 1]$ $1$
5.1-b \(\Q(\sqrt{5}, \sqrt{6})\) $[5, 5, \frac{3}{19}w^{3} + \frac{5}{19}w^{2} - \frac{27}{19}w - 1]$ $1$
5.2-a \(\Q(\sqrt{5}, \sqrt{6})\) $[5,5,-\frac{3}{19}w^{3} + \frac{14}{19}w^{2} + \frac{8}{19}w - 2]$ $1$
5.2-b \(\Q(\sqrt{5}, \sqrt{6})\) $[5,5,-\frac{3}{19}w^{3} + \frac{14}{19}w^{2} + \frac{8}{19}w - 2]$ $1$
9.1-a \(\Q(\sqrt{5}, \sqrt{6})\) $[9, 3, -\frac{2}{19}w^{3} + \frac{3}{19}w^{2} + \frac{37}{19}w - 4]$ $1$
9.1-b \(\Q(\sqrt{5}, \sqrt{6})\) $[9, 3, -\frac{2}{19}w^{3} + \frac{3}{19}w^{2} + \frac{37}{19}w - 4]$ $1$
9.1-c \(\Q(\sqrt{5}, \sqrt{6})\) $[9, 3, -\frac{2}{19}w^{3} + \frac{3}{19}w^{2} + \frac{37}{19}w - 4]$ $2$
9.1-d \(\Q(\sqrt{5}, \sqrt{6})\) $[9, 3, -\frac{2}{19}w^{3} + \frac{3}{19}w^{2} + \frac{37}{19}w - 4]$ $2$
9.1-e \(\Q(\sqrt{5}, \sqrt{6})\) $[9, 3, -\frac{2}{19}w^{3} + \frac{3}{19}w^{2} + \frac{37}{19}w - 4]$ $4$
9.1-f \(\Q(\sqrt{5}, \sqrt{6})\) $[9, 3, -\frac{2}{19}w^{3} + \frac{3}{19}w^{2} + \frac{37}{19}w - 4]$ $4$
16.1-a \(\Q(\sqrt{5}, \sqrt{6})\) $[16, 2, 2]$ $1$
16.1-b \(\Q(\sqrt{5}, \sqrt{6})\) $[16, 2, 2]$ $2$
16.1-c \(\Q(\sqrt{5}, \sqrt{6})\) $[16, 2, 2]$ $2$
16.1-d \(\Q(\sqrt{5}, \sqrt{6})\) $[16, 2, 2]$ $2$
16.1-e \(\Q(\sqrt{5}, \sqrt{6})\) $[16, 2, 2]$ $4$
16.1-f \(\Q(\sqrt{5}, \sqrt{6})\) $[16, 2, 2]$ $4$
16.1-g \(\Q(\sqrt{5}, \sqrt{6})\) $[16, 2, 2]$ $8$
19.1-a \(\Q(\sqrt{5}, \sqrt{6})\) $[19, 19, -w]$ $8$
19.1-b \(\Q(\sqrt{5}, \sqrt{6})\) $[19, 19, -w]$ $8$
19.1-c \(\Q(\sqrt{5}, \sqrt{6})\) $[19, 19, -w]$ $8$
19.2-a \(\Q(\sqrt{5}, \sqrt{6})\) $[19,19,\frac{4}{19}w^{3} - \frac{6}{19}w^{2} - \frac{55}{19}w + 1]$ $8$
19.2-b \(\Q(\sqrt{5}, \sqrt{6})\) $[19,19,\frac{4}{19}w^{3} - \frac{6}{19}w^{2} - \frac{55}{19}w + 1]$ $8$
19.2-c \(\Q(\sqrt{5}, \sqrt{6})\) $[19,19,\frac{4}{19}w^{3} - \frac{6}{19}w^{2} - \frac{55}{19}w + 1]$ $8$
19.3-a \(\Q(\sqrt{5}, \sqrt{6})\) $[19,19,-\frac{4}{19}w^{3} + \frac{6}{19}w^{2} + \frac{55}{19}w - 2]$ $8$
19.3-b \(\Q(\sqrt{5}, \sqrt{6})\) $[19,19,-\frac{4}{19}w^{3} + \frac{6}{19}w^{2} + \frac{55}{19}w - 2]$ $8$
19.3-c \(\Q(\sqrt{5}, \sqrt{6})\) $[19,19,-\frac{4}{19}w^{3} + \frac{6}{19}w^{2} + \frac{55}{19}w - 2]$ $8$
19.4-a \(\Q(\sqrt{5}, \sqrt{6})\) $[19,19,w - 1]$ $8$
19.4-b \(\Q(\sqrt{5}, \sqrt{6})\) $[19,19,w - 1]$ $8$
19.4-c \(\Q(\sqrt{5}, \sqrt{6})\) $[19,19,w - 1]$ $8$
20.1-a \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $1$
20.1-b \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $1$
20.1-c \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $1$
20.1-d \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $1$
20.1-e \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $1$
20.1-f \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $1$
20.1-g \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $1$
20.1-h \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $1$
20.1-i \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $2$
20.1-j \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $2$
20.1-k \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $4$
20.1-l \(\Q(\sqrt{5}, \sqrt{6})\) $[20, 10, \frac{2}{19}w^{3} - \frac{3}{19}w^{2} + \frac{1}{19}w - 1]$ $4$
20.2-a \(\Q(\sqrt{5}, \sqrt{6})\) $[20,10,-\frac{2}{19}w^{3} + \frac{3}{19}w^{2} - \frac{1}{19}w - 1]$ $1$
20.2-b \(\Q(\sqrt{5}, \sqrt{6})\) $[20,10,-\frac{2}{19}w^{3} + \frac{3}{19}w^{2} - \frac{1}{19}w - 1]$ $1$
20.2-c \(\Q(\sqrt{5}, \sqrt{6})\) $[20,10,-\frac{2}{19}w^{3} + \frac{3}{19}w^{2} - \frac{1}{19}w - 1]$ $1$
20.2-d \(\Q(\sqrt{5}, \sqrt{6})\) $[20,10,-\frac{2}{19}w^{3} + \frac{3}{19}w^{2} - \frac{1}{19}w - 1]$ $1$
Next