Learn more about

Further refine search

Refine search


Results (1-50 of 699 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{2}, \sqrt{7})\) $[1, 1, 1]$ $1$
1.1-b \(\Q(\sqrt{2}, \sqrt{7})\) $[1, 1, 1]$ $1$
1.1-c \(\Q(\sqrt{2}, \sqrt{7})\) $[1, 1, 1]$ $2$
1.1-d \(\Q(\sqrt{2}, \sqrt{7})\) $[1, 1, 1]$ $2$
1.1-e \(\Q(\sqrt{2}, \sqrt{7})\) $[1, 1, 1]$ $2$
7.1-a \(\Q(\sqrt{2}, \sqrt{7})\) $[7, 7, \frac{1}{3}w^{3} - \frac{8}{3}w + 2]$ $2$
7.1-b \(\Q(\sqrt{2}, \sqrt{7})\) $[7, 7, \frac{1}{3}w^{3} - \frac{8}{3}w + 2]$ $2$
7.2-a \(\Q(\sqrt{2}, \sqrt{7})\) $[7,7,-\frac{1}{3}w^{3} + \frac{8}{3}w + 2]$ $2$
7.2-b \(\Q(\sqrt{2}, \sqrt{7})\) $[7,7,-\frac{1}{3}w^{3} + \frac{8}{3}w + 2]$ $2$
8.1-a \(\Q(\sqrt{2}, \sqrt{7})\) $[8, 2, -\frac{1}{3}w^{3} - w^{2} - \frac{1}{3}w + 1]$ $2$
8.1-b \(\Q(\sqrt{2}, \sqrt{7})\) $[8, 2, -\frac{1}{3}w^{3} - w^{2} - \frac{1}{3}w + 1]$ $2$
9.1-a \(\Q(\sqrt{2}, \sqrt{7})\) $[9, 3, w]$ $6$
9.1-b \(\Q(\sqrt{2}, \sqrt{7})\) $[9, 3, w]$ $6$
9.2-a \(\Q(\sqrt{2}, \sqrt{7})\) $[9,3,-\frac{1}{3}w^{3} + \frac{8}{3}w]$ $6$
9.2-b \(\Q(\sqrt{2}, \sqrt{7})\) $[9,3,-\frac{1}{3}w^{3} + \frac{8}{3}w]$ $6$
14.1-a \(\Q(\sqrt{2}, \sqrt{7})\) $[14, 14, \frac{2}{3}w^{3} - \frac{13}{3}w + 1]$ $2$
14.1-b \(\Q(\sqrt{2}, \sqrt{7})\) $[14, 14, \frac{2}{3}w^{3} - \frac{13}{3}w + 1]$ $2$
14.1-c \(\Q(\sqrt{2}, \sqrt{7})\) $[14, 14, \frac{2}{3}w^{3} - \frac{13}{3}w + 1]$ $2$
14.1-d \(\Q(\sqrt{2}, \sqrt{7})\) $[14, 14, \frac{2}{3}w^{3} - \frac{13}{3}w + 1]$ $2$
14.2-a \(\Q(\sqrt{2}, \sqrt{7})\) $[14,14,-\frac{2}{3}w^{3} + \frac{13}{3}w + 1]$ $2$
14.2-b \(\Q(\sqrt{2}, \sqrt{7})\) $[14,14,-\frac{2}{3}w^{3} + \frac{13}{3}w + 1]$ $2$
14.2-c \(\Q(\sqrt{2}, \sqrt{7})\) $[14,14,-\frac{2}{3}w^{3} + \frac{13}{3}w + 1]$ $2$
14.2-d \(\Q(\sqrt{2}, \sqrt{7})\) $[14,14,-\frac{2}{3}w^{3} + \frac{13}{3}w + 1]$ $2$
16.1-a \(\Q(\sqrt{2}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-b \(\Q(\sqrt{2}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-c \(\Q(\sqrt{2}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-d \(\Q(\sqrt{2}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-e \(\Q(\sqrt{2}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-f \(\Q(\sqrt{2}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-g \(\Q(\sqrt{2}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-h \(\Q(\sqrt{2}, \sqrt{7})\) $[16, 2, 2]$ $1$
16.1-i \(\Q(\sqrt{2}, \sqrt{7})\) $[16, 2, 2]$ $2$
18.1-a \(\Q(\sqrt{2}, \sqrt{7})\) $[18,6,\frac{1}{3}w^{3} - \frac{8}{3}w - 3]$ $8$
18.1-b \(\Q(\sqrt{2}, \sqrt{7})\) $[18,6,\frac{1}{3}w^{3} - \frac{8}{3}w - 3]$ $8$
18.2-a \(\Q(\sqrt{2}, \sqrt{7})\) $[18, 6, -w - 3]$ $8$
18.2-b \(\Q(\sqrt{2}, \sqrt{7})\) $[18, 6, -w - 3]$ $8$
25.1-a \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $1$
25.1-b \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $1$
25.1-c \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $1$
25.1-d \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $1$
25.1-e \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $1$
25.1-f \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $1$
25.1-g \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $1$
25.1-h \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $1$
25.1-i \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $6$
25.1-j \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $6$
25.1-k \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $8$
25.1-l \(\Q(\sqrt{2}, \sqrt{7})\) $[25,5,\frac{1}{3}w^{3} - w^{2} - \frac{5}{3}w + 4]$ $8$
25.2-a \(\Q(\sqrt{2}, \sqrt{7})\) $[25, 5, -\frac{1}{3}w^{3} - w^{2} + \frac{5}{3}w + 4]$ $1$
25.2-b \(\Q(\sqrt{2}, \sqrt{7})\) $[25, 5, -\frac{1}{3}w^{3} - w^{2} + \frac{5}{3}w + 4]$ $1$
Next